Normalized defining polynomial
\( x^{16} - 492 x^{14} - 344 x^{13} + 62812 x^{12} + 56712 x^{11} - 3180476 x^{10} - 3553552 x^{9} + 71711252 x^{8} + 76869440 x^{7} - 755140300 x^{6} - 581322312 x^{5} + 3594006416 x^{4} + 935572536 x^{3} - 6503647516 x^{2} + 1636792368 x + 726055567 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1747511875136079735717765427007261010558976=2^{48}\cdot 17^{2}\cdot 16673^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $436.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 16673$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{7}{16}$, $\frac{1}{272} a^{13} + \frac{7}{272} a^{12} - \frac{1}{34} a^{11} - \frac{3}{34} a^{10} + \frac{21}{272} a^{9} + \frac{43}{272} a^{8} - \frac{4}{17} a^{7} - \frac{8}{17} a^{6} + \frac{129}{272} a^{5} - \frac{41}{272} a^{4} + \frac{5}{34} a^{3} + \frac{9}{34} a^{2} + \frac{73}{272} a + \frac{7}{16}$, $\frac{1}{544} a^{14} + \frac{11}{544} a^{12} + \frac{1}{17} a^{11} + \frac{53}{544} a^{10} - \frac{13}{68} a^{9} + \frac{111}{544} a^{8} - \frac{7}{17} a^{7} + \frac{209}{544} a^{6} - \frac{4}{17} a^{5} - \frac{149}{544} a^{4} - \frac{13}{34} a^{3} + \frac{249}{544} a^{2} + \frac{19}{68} a + \frac{11}{32}$, $\frac{1}{13389776399305910720960348287028899401221186609822034435795385792} a^{15} + \frac{5775681269392802505255052500525089832388676617306906166147519}{13389776399305910720960348287028899401221186609822034435795385792} a^{14} + \frac{8094674060535954008590957329457258837271084741451128749485965}{13389776399305910720960348287028899401221186609822034435795385792} a^{13} - \frac{284355089187207395283152651653729688375249723088114306193753329}{13389776399305910720960348287028899401221186609822034435795385792} a^{12} + \frac{45205455788165634997879692197877485187161191285905202179935631}{1912825199900844388708621183861271343031598087117433490827912256} a^{11} - \frac{1543881926472971953447231710238695599428638120833207157709082073}{13389776399305910720960348287028899401221186609822034435795385792} a^{10} + \frac{526093910838215645144876021393694153800873510121984982576857085}{13389776399305910720960348287028899401221186609822034435795385792} a^{9} + \frac{2750264780512823615855365053121254002361769078998002786800624079}{13389776399305910720960348287028899401221186609822034435795385792} a^{8} + \frac{2458075867831291347752882438687663927641146655693594131504818249}{13389776399305910720960348287028899401221186609822034435795385792} a^{7} - \frac{4457369281001209357995668980020275194312737669053643415284019033}{13389776399305910720960348287028899401221186609822034435795385792} a^{6} - \frac{5931990326869640087323221564019858796550521571263810672192687563}{13389776399305910720960348287028899401221186609822034435795385792} a^{5} - \frac{5089810534826193518557034728581498073689497711884716345799662329}{13389776399305910720960348287028899401221186609822034435795385792} a^{4} - \frac{4959890360264236336357749466399460952877067507651972307801621195}{13389776399305910720960348287028899401221186609822034435795385792} a^{3} + \frac{948399778685264421196681615213409090749746044642148611426684845}{1912825199900844388708621183861271343031598087117433490827912256} a^{2} - \frac{64044827479313663803899356724050399131577177620946238770300711}{13389776399305910720960348287028899401221186609822034435795385792} a + \frac{39397876693236949559673709277874015442611022944585884544498403}{787633905841524160056491075707582317718893329989531437399728576}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28831028658100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.1067072.2, 4.4.34146304.1, 8.8.1165970076860416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 16673 | Data not computed | ||||||