Normalized defining polynomial
\( x^{16} - 4 x^{15} - 2242 x^{14} + 6482 x^{13} + 1973254 x^{12} - 3143498 x^{11} - 875311194 x^{10} + 185218176 x^{9} + 206515921983 x^{8} + 244194385350 x^{7} - 24824036076810 x^{6} - 64296287880780 x^{5} + 1300696765087662 x^{4} + 5554771415609822 x^{3} - 18027969452365224 x^{2} - 127514159553381278 x - 171107553307089379 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(170920426163982849921157269262336000000000000=2^{24}\cdot 5^{12}\cdot 29^{6}\cdot 89^{6}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $581.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{58} a^{12} - \frac{7}{29} a^{11} - \frac{4}{29} a^{10} - \frac{4}{29} a^{9} + \frac{7}{29} a^{8} + \frac{11}{29} a^{7} + \frac{3}{29} a^{6} - \frac{11}{29} a^{5} - \frac{10}{29} a^{3} - \frac{12}{29} a^{2} - \frac{6}{29} a - \frac{1}{2}$, $\frac{1}{58} a^{13} - \frac{1}{58} a^{11} - \frac{2}{29} a^{10} - \frac{11}{58} a^{9} - \frac{7}{29} a^{8} - \frac{5}{58} a^{7} + \frac{2}{29} a^{6} + \frac{11}{58} a^{5} - \frac{10}{29} a^{4} + \frac{15}{58} a^{3} + \frac{3}{29} a$, $\frac{1}{134456122} a^{14} + \frac{477712}{67228061} a^{13} - \frac{427513}{67228061} a^{12} + \frac{25538615}{134456122} a^{11} + \frac{9117309}{134456122} a^{10} + \frac{20087583}{134456122} a^{9} - \frac{16621800}{67228061} a^{8} - \frac{22638293}{134456122} a^{7} + \frac{20832245}{134456122} a^{6} - \frac{38619411}{134456122} a^{5} - \frac{12703067}{67228061} a^{4} + \frac{6443517}{134456122} a^{3} + \frac{5790446}{67228061} a^{2} - \frac{18628545}{134456122} a - \frac{986089}{2318209}$, $\frac{1}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{15} - \frac{74149998677420550053279079833030899822421514383471263292934813231419287158011336153920866794207}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{14} + \frac{76087528352763086453519113923314552058799671371916077632171214282658332449628039242114638730864979459}{41184952107578605215490928756717452261096355477200803956226642028018271519595364036998119759591446278359} a^{13} - \frac{8420195794697917858009090382530098520018141153357216808306106827843083920715460203163165465526241055}{1420170762330296731568652715748877664175736395765544964007815242345457638606736690930969646882463664771} a^{12} - \frac{9797641027953339866008648681727697915407639984625821257936546017746426200905641549992873248703472895215}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{11} + \frac{941272490594538176498425655763731345208896259541008232722185332396299917006381073172057545680460780399}{41184952107578605215490928756717452261096355477200803956226642028018271519595364036998119759591446278359} a^{10} + \frac{4183930060255738288712760035470598929766681355454429637135631386794882630618089079085214646752744110601}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{9} - \frac{20211138703718267299125807286663331784834179477113710877160280602130960863020308209816657510176840618603}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{8} + \frac{6147326803033543797602543710606224954723627310375655385117246592668924084638213519497143693010263288339}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{7} - \frac{6925160227754518277960038391377170719403072445294038545271034813291552506132187453585397022224770917164}{41184952107578605215490928756717452261096355477200803956226642028018271519595364036998119759591446278359} a^{6} - \frac{7404241080750713735315435133137767368794675285758526633173250917686668297126730172421671083279463088957}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{5} - \frac{37844285785196536308784240682455864916489836160179107043724811908600795488107204275293964115806625197993}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{4} + \frac{13270501898310828523656771557246484632128920085660671457295348934954271292042634816952070553872234873552}{41184952107578605215490928756717452261096355477200803956226642028018271519595364036998119759591446278359} a^{3} + \frac{23757634472194138916694987985698265720764020507649521520018550455369453333560070386304906111284481072221}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a^{2} + \frac{37277184758521445974643734958491325366564142819944250372476864820161195832920182539351767159645209888227}{82369904215157210430981857513434904522192710954401607912453284056036543039190728073996239519182892556718} a + \frac{506626703674466131066804720547417722464622231616150315733817817389409306919064634367820511950918568389}{2840341524660593463137305431497755328351472791531089928015630484690915277213473381861939293764927329542}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7300222779600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5162000.1, 4.4.2225.1, 4.4.58000.1, 8.8.26646244000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ |
| 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |