Properties

Label 16.16.1676419721...0625.1
Degree $16$
Signature $[16, 0]$
Discriminant $5^{8}\cdot 29^{10}\cdot 101^{2}$
Root discriminant $32.66$
Ramified primes $5, 29, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2.C_2\wr C_2^2$ (as 16T400)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 42, -66, -1315, -1202, 4086, 2409, -5457, -1106, 3373, -151, -945, 178, 104, -28, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 28*x^14 + 104*x^13 + 178*x^12 - 945*x^11 - 151*x^10 + 3373*x^9 - 1106*x^8 - 5457*x^7 + 2409*x^6 + 4086*x^5 - 1202*x^4 - 1315*x^3 - 66*x^2 + 42*x - 1)
 
gp: K = bnfinit(x^16 - 3*x^15 - 28*x^14 + 104*x^13 + 178*x^12 - 945*x^11 - 151*x^10 + 3373*x^9 - 1106*x^8 - 5457*x^7 + 2409*x^6 + 4086*x^5 - 1202*x^4 - 1315*x^3 - 66*x^2 + 42*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - 28 x^{14} + 104 x^{13} + 178 x^{12} - 945 x^{11} - 151 x^{10} + 3373 x^{9} - 1106 x^{8} - 5457 x^{7} + 2409 x^{6} + 4086 x^{5} - 1202 x^{4} - 1315 x^{3} - 66 x^{2} + 42 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1676419721443496250390625=5^{8}\cdot 29^{10}\cdot 101^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{2}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{6} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{6} a^{4} + \frac{7}{18} a^{3} - \frac{5}{18} a + \frac{1}{9}$, $\frac{1}{1153632673782} a^{15} - \frac{2589246505}{576816336891} a^{14} - \frac{2298779537}{192272112297} a^{13} + \frac{3695279555}{1153632673782} a^{12} - \frac{7603313825}{128181408198} a^{11} - \frac{7406217621}{42727136066} a^{10} - \frac{239046459587}{576816336891} a^{9} - \frac{25483657691}{128181408198} a^{8} - \frac{72971598113}{1153632673782} a^{7} + \frac{94354927901}{576816336891} a^{6} + \frac{73669958201}{576816336891} a^{5} - \frac{454407233171}{1153632673782} a^{4} + \frac{189896815354}{576816336891} a^{3} + \frac{393841987207}{1153632673782} a^{2} + \frac{53192080064}{576816336891} a - \frac{74340556127}{1153632673782}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7256873.72444 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2.C_2\wr C_2^2$ (as 16T400):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 20 conjugacy class representatives for $C_2.C_2\wr C_2^2$
Character table for $C_2.C_2\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$101$101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.4.2.2$x^{4} - 101 x^{2} + 30603$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$