Normalized defining polynomial
\( x^{16} - x^{15} - 33 x^{14} + 33 x^{13} + 443 x^{12} - 443 x^{11} - 3093 x^{10} + 3093 x^{9} + 11867 x^{8} - 11867 x^{7} - 24037 x^{6} + 24037 x^{5} + 21659 x^{4} - 21659 x^{3} - 4453 x^{2} + 4453 x - 101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16501299269766837593302193=7^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(119=7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{119}(64,·)$, $\chi_{119}(1,·)$, $\chi_{119}(6,·)$, $\chi_{119}(8,·)$, $\chi_{119}(15,·)$, $\chi_{119}(20,·)$, $\chi_{119}(90,·)$, $\chi_{119}(27,·)$, $\chi_{119}(97,·)$, $\chi_{119}(36,·)$, $\chi_{119}(41,·)$, $\chi_{119}(106,·)$, $\chi_{119}(43,·)$, $\chi_{119}(48,·)$, $\chi_{119}(50,·)$, $\chi_{119}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{271} a^{9} - \frac{96}{271} a^{8} - \frac{18}{271} a^{7} - \frac{90}{271} a^{6} + \frac{108}{271} a^{5} - \frac{92}{271} a^{4} + \frac{31}{271} a^{3} + \frac{93}{271} a^{2} - \frac{127}{271} a - \frac{91}{271}$, $\frac{1}{271} a^{10} - \frac{20}{271} a^{8} + \frac{79}{271} a^{7} - \frac{131}{271} a^{6} - \frac{22}{271} a^{5} - \frac{129}{271} a^{4} + \frac{88}{271} a^{3} + \frac{129}{271} a^{2} - \frac{88}{271} a - \frac{64}{271}$, $\frac{1}{271} a^{11} + \frac{56}{271} a^{8} + \frac{51}{271} a^{7} + \frac{75}{271} a^{6} + \frac{134}{271} a^{5} - \frac{126}{271} a^{4} - \frac{64}{271} a^{3} - \frac{125}{271} a^{2} + \frac{106}{271} a + \frac{77}{271}$, $\frac{1}{271} a^{12} + \frac{7}{271} a^{8} - \frac{1}{271} a^{7} + \frac{25}{271} a^{6} + \frac{59}{271} a^{5} - \frac{61}{271} a^{4} + \frac{36}{271} a^{3} + \frac{47}{271} a^{2} - \frac{128}{271} a - \frac{53}{271}$, $\frac{1}{271} a^{13} + \frac{129}{271} a^{8} - \frac{120}{271} a^{7} - \frac{124}{271} a^{6} - \frac{4}{271} a^{5} - \frac{133}{271} a^{4} + \frac{101}{271} a^{3} + \frac{34}{271} a^{2} + \frac{23}{271} a + \frac{95}{271}$, $\frac{1}{271} a^{14} + \frac{69}{271} a^{8} + \frac{30}{271} a^{7} - \frac{47}{271} a^{6} + \frac{27}{271} a^{5} + \frac{45}{271} a^{4} + \frac{100}{271} a^{3} - \frac{50}{271} a^{2} - \frac{53}{271} a + \frac{86}{271}$, $\frac{1}{271} a^{15} - \frac{121}{271} a^{8} + \frac{111}{271} a^{7} + \frac{4}{271} a^{6} - \frac{90}{271} a^{5} - \frac{56}{271} a^{4} - \frac{21}{271} a^{3} + \frac{34}{271} a^{2} - \frac{94}{271} a + \frac{46}{271}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18808281.0978 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||