Normalized defining polynomial
\( x^{16} - 64 x^{14} - 48 x^{13} + 1412 x^{12} + 1744 x^{11} - 13032 x^{10} - 19392 x^{9} + 53464 x^{8} + 91072 x^{7} - 83472 x^{6} - 179488 x^{5} + 6952 x^{4} + 105760 x^{3} + 29264 x^{2} - 7040 x - 1724 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1638350662595178231031136256=2^{40}\cdot 3^{8}\cdot 17^{6}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{136} a^{12} - \frac{5}{136} a^{11} - \frac{1}{17} a^{10} - \frac{1}{34} a^{9} + \frac{1}{68} a^{8} - \frac{11}{68} a^{7} - \frac{8}{17} a^{6} + \frac{8}{17} a^{5} + \frac{1}{68} a^{4} - \frac{21}{68} a^{3} + \frac{3}{17} a^{2} + \frac{5}{17}$, $\frac{1}{136} a^{13} + \frac{1}{136} a^{11} + \frac{7}{136} a^{10} - \frac{1}{136} a^{9} + \frac{5}{136} a^{8} + \frac{15}{68} a^{7} + \frac{25}{68} a^{6} - \frac{13}{34} a^{5} - \frac{33}{68} a^{4} + \frac{9}{68} a^{3} - \frac{25}{68} a^{2} - \frac{31}{68} a - \frac{19}{68}$, $\frac{1}{26384} a^{14} + \frac{7}{13192} a^{13} - \frac{7}{13192} a^{12} + \frac{199}{3298} a^{11} - \frac{223}{13192} a^{10} + \frac{1}{194} a^{9} + \frac{111}{6596} a^{8} + \frac{118}{1649} a^{7} + \frac{2589}{13192} a^{6} + \frac{1661}{6596} a^{5} + \frac{599}{6596} a^{4} + \frac{87}{3298} a^{3} - \frac{13}{194} a^{2} + \frac{1013}{3298} a + \frac{27}{1649}$, $\frac{1}{9362708882810617314704} a^{15} - \frac{84265697795493745}{4681354441405308657352} a^{14} - \frac{1723578337107392379}{585169305175663582169} a^{13} + \frac{4767416538290750049}{4681354441405308657352} a^{12} - \frac{264269446516511043839}{4681354441405308657352} a^{11} - \frac{28075255361935150793}{2340677220702654328676} a^{10} + \frac{130814971522880347519}{4681354441405308657352} a^{9} + \frac{11661420102039400989}{275373790670900509256} a^{8} + \frac{447024699575904198977}{4681354441405308657352} a^{7} + \frac{880939545971428835599}{2340677220702654328676} a^{6} + \frac{385590345505767583113}{2340677220702654328676} a^{5} - \frac{69454091688785342205}{585169305175663582169} a^{4} - \frac{327317089969464895181}{1170338610351327164338} a^{3} - \frac{288057169846586431286}{585169305175663582169} a^{2} - \frac{1153813493772564312969}{2340677220702654328676} a + \frac{686307925300490547583}{2340677220702654328676}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 202459645.634 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T595):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |