Normalized defining polynomial
\( x^{16} - 5 x^{15} - 297 x^{14} + 1060 x^{13} + 35573 x^{12} - 76475 x^{11} - 2207799 x^{10} + 1841560 x^{9} + 75196675 x^{8} + 21744135 x^{7} - 1351490139 x^{6} - 1541936250 x^{5} + 10995877008 x^{4} + 17851139640 x^{3} - 27965699712 x^{2} - 36379432800 x + 35867779776 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16225116300501260546649351778570556640625=5^{14}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $325.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{5}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{5} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{72} a^{8} - \frac{1}{72} a^{7} - \frac{1}{36} a^{6} - \frac{5}{24} a^{5} - \frac{1}{36} a^{4} - \frac{7}{72} a^{3} - \frac{23}{72} a^{2} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{144} a^{9} - \frac{1}{144} a^{8} - \frac{1}{72} a^{7} - \frac{1}{48} a^{6} + \frac{5}{72} a^{5} + \frac{29}{144} a^{4} - \frac{23}{144} a^{3} - \frac{1}{8} a^{2} + \frac{1}{12} a$, $\frac{1}{432} a^{10} - \frac{1}{144} a^{8} - \frac{17}{432} a^{7} - \frac{17}{432} a^{6} + \frac{11}{48} a^{5} + \frac{1}{72} a^{4} + \frac{19}{432} a^{3} - \frac{29}{72} a^{2} - \frac{5}{12} a$, $\frac{1}{432} a^{11} - \frac{1}{216} a^{8} - \frac{5}{432} a^{7} - \frac{1}{24} a^{6} + \frac{5}{24} a^{5} + \frac{35}{216} a^{4} + \frac{11}{48} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{2592} a^{12} - \frac{1}{1296} a^{11} - \frac{1}{1296} a^{9} - \frac{1}{2592} a^{8} - \frac{11}{648} a^{7} + \frac{1}{48} a^{6} - \frac{289}{1296} a^{5} + \frac{391}{2592} a^{4} - \frac{17}{144} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{23328} a^{13} + \frac{1}{5832} a^{12} + \frac{1}{1296} a^{11} + \frac{1}{1458} a^{10} + \frac{77}{23328} a^{9} - \frac{19}{11664} a^{8} - \frac{11}{1296} a^{7} + \frac{395}{11664} a^{6} - \frac{4391}{23328} a^{5} - \frac{1}{432} a^{4} + \frac{29}{432} a^{3} - \frac{5}{18} a^{2} - \frac{2}{9} a - \frac{1}{2}$, $\frac{1}{139968} a^{14} + \frac{1}{139968} a^{13} - \frac{7}{46656} a^{12} + \frac{35}{69984} a^{11} + \frac{29}{139968} a^{10} - \frac{53}{139968} a^{9} - \frac{109}{46656} a^{8} + \frac{17}{69984} a^{7} - \frac{3845}{139968} a^{6} - \frac{3169}{46656} a^{5} + \frac{635}{5184} a^{4} - \frac{41}{216} a^{3} + \frac{23}{432} a^{2} + \frac{4}{9} a - \frac{1}{4}$, $\frac{1}{32332996794059300542423079043391627444608} a^{15} - \frac{51681520099052822561089166571166499}{32332996794059300542423079043391627444608} a^{14} - \frac{153999830241633732385107321765148505}{10777665598019766847474359681130542481536} a^{13} + \frac{991661765542277941703874524846527673}{16166498397029650271211539521695813722304} a^{12} + \frac{18711701814888095193065826451530898829}{32332996794059300542423079043391627444608} a^{11} + \frac{19950289336599162615541962425582802031}{32332996794059300542423079043391627444608} a^{10} - \frac{2576336151887256170889496155416550599}{10777665598019766847474359681130542481536} a^{9} - \frac{49248652108235482315103620807557649855}{16166498397029650271211539521695813722304} a^{8} - \frac{1471302090632274629878761764982521807}{751930158001379082381932070776549475456} a^{7} - \frac{357567962365015607454801056224715850737}{10777665598019766847474359681130542481536} a^{6} - \frac{292604442863770059822559876439671094167}{1197518399779974094163817742347838053504} a^{5} + \frac{1937971938889525047218641927916364253}{8316099998472042320582067655193319816} a^{4} + \frac{15766672341136620791563467050445317693}{99793199981664507846984811862319837792} a^{3} - \frac{285313259435103239863202100851147732}{1039512499809005290072758456899164977} a^{2} + \frac{388027396928460707119911303791494013}{924011110941338035620229739465924424} a - \frac{270447633082960542741678644961101}{12833487651963028272503190825915617}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5709703146950000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $149$ | 149.8.7.1 | $x^{8} - 149$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 149.8.7.1 | $x^{8} - 149$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |