Normalized defining polynomial
\( x^{16} - 592 x^{14} + 139762 x^{12} - 16735612 x^{10} + 1070625863 x^{8} - 35507044188 x^{6} + 551265806762 x^{4} - 3283196824612 x^{2} + 3275329739569 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15875052080993898958961521972146601984=2^{40}\cdot 41^{6}\cdot 1249^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $211.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 1249$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{204836} a^{12} - \frac{148}{51209} a^{10} - \frac{13865}{204836} a^{8} + \frac{15235}{51209} a^{6} - \frac{51909}{204836} a^{4} - \frac{671}{2498} a^{2} - \frac{1}{2}$, $\frac{1}{204836} a^{13} - \frac{148}{51209} a^{11} - \frac{13865}{204836} a^{9} + \frac{15235}{51209} a^{7} - \frac{51909}{204836} a^{5} - \frac{671}{2498} a^{3} - \frac{1}{2} a$, $\frac{1}{5123421006462342173170815627488418988} a^{14} + \frac{2711003856575835830523810270755}{2561710503231171086585407813744209494} a^{12} + \frac{330145111643876293457857433450148889}{5123421006462342173170815627488418988} a^{10} - \frac{79855652183779612566580352959326085}{1280855251615585543292703906872104747} a^{8} + \frac{2149854799882323533676193325407882501}{5123421006462342173170815627488418988} a^{6} + \frac{718118501587441366055562852891393743}{2561710503231171086585407813744209494} a^{4} - \frac{3960714679204972090783317527705}{25012307438449990105112458881683} a^{2} - \frac{2848277038811441190932066059}{40051733288150504571837404134}$, $\frac{1}{5123421006462342173170815627488418988} a^{15} + \frac{2711003856575835830523810270755}{2561710503231171086585407813744209494} a^{13} + \frac{330145111643876293457857433450148889}{5123421006462342173170815627488418988} a^{11} - \frac{79855652183779612566580352959326085}{1280855251615585543292703906872104747} a^{9} + \frac{2149854799882323533676193325407882501}{5123421006462342173170815627488418988} a^{7} + \frac{718118501587441366055562852891393743}{2561710503231171086585407813744209494} a^{5} - \frac{3960714679204972090783317527705}{25012307438449990105112458881683} a^{3} - \frac{2848277038811441190932066059}{40051733288150504571837404134} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19611756044400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1262 |
| Character table for t16n1262 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.8599834624.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.7 | $x^{8} + 72 x^{4} + 144$ | $4$ | $2$ | $20$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.20.7 | $x^{8} + 72 x^{4} + 144$ | $4$ | $2$ | $20$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ | |
| $41$ | 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.8.0.1 | $x^{8} - x + 12$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1249 | Data not computed | ||||||