Normalized defining polynomial
\( x^{16} - 5 x^{15} - 1709 x^{14} + 5733 x^{13} + 1025838 x^{12} - 2578770 x^{11} - 260470219 x^{10} + 537783345 x^{9} + 27172084547 x^{8} - 27058405023 x^{7} - 1122845915066 x^{6} + 475008820192 x^{5} + 14316222629824 x^{4} - 14649824518528 x^{3} - 10929645040640 x^{2} + 7374113275904 x + 3477032665088 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15359445630083788418852698524374845584773320185041=41^{15}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1186.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{5}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} - \frac{15}{32} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{9}{64} a^{6} - \frac{5}{32} a^{5} + \frac{15}{64} a^{4} - \frac{7}{16} a^{3} - \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{1}{128} a^{11} + \frac{1}{128} a^{10} + \frac{1}{64} a^{9} + \frac{3}{64} a^{8} + \frac{13}{128} a^{7} + \frac{5}{128} a^{6} - \frac{25}{128} a^{5} - \frac{3}{128} a^{4} + \frac{5}{64} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{1024} a^{14} + \frac{3}{1024} a^{13} - \frac{5}{1024} a^{12} - \frac{3}{1024} a^{11} - \frac{13}{512} a^{10} + \frac{31}{512} a^{9} - \frac{59}{1024} a^{8} - \frac{167}{1024} a^{7} - \frac{101}{1024} a^{6} - \frac{39}{1024} a^{5} - \frac{33}{512} a^{4} + \frac{17}{64} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a$, $\frac{1}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{15} - \frac{892598287458002703739397241053279209082036300036713042300620721944009559199889314637141}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{14} + \frac{7722547352305913865087858850921349169474293740538626331685813738564486366232316966332131}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{13} - \frac{12605594526149917267860534617038300425797824881395918890361006599890396148889716883024267}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{12} - \frac{980268067420429637287951909246113259978750264197356508984385100428483116462842380867633}{1012629423332700789724138385306634959389689786080136015132411236438431002824196975842197504} a^{11} + \frac{6236800555343989126438594380761001646131788610726010770194342677307891864582908835019943}{1012629423332700789724138385306634959389689786080136015132411236438431002824196975842197504} a^{10} + \frac{53374879052735108190622773505409225301834281414851271614141376670336721062985456126984149}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{9} - \frac{12835969995672785365845084824727961989104609117711744894654924457988815199636260063818591}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{8} + \frac{433516497206759093330679522269514583180683061602640585990155500411134535416729315650041331}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{7} + \frac{408679491609214406672285232955818932614649837160123073818419015911202186404567211771484273}{2025258846665401579448276770613269918779379572160272030264822472876862005648393951684395008} a^{6} + \frac{68911787881394420936294161859933390865885506008218395236142722873492737094288766773545723}{1012629423332700789724138385306634959389689786080136015132411236438431002824196975842197504} a^{5} - \frac{1875406231145441892223942033337403691829234627650643523104981797746944740027431250549221}{7911167369786724919719831135208085620231951453751062618221962784675242209564038873767168} a^{4} + \frac{2648667803924127837942248034161656436315879076466667040485175539113519813696454825343791}{31644669479146899678879324540832342480927805815004250472887851138700968838256155495068672} a^{3} - \frac{6573790556185189386081873744892516747334775313243287778879287681922485114092439805852091}{15822334739573449839439662270416171240463902907502125236443925569350484419128077747534336} a^{2} - \frac{182999387353656890288051178346952403566893553572272088653814924717711614746239171909039}{1977791842446681229929957783802021405057987863437765654555490696168810552391009718441792} a + \frac{42512940550685566924723845879910273480426067404063729252564530309369176522656651782391}{123611990152917576870622361487626337816124241464860353409718168510550659524438107402612}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4032996399580000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.256455041.2, 8.8.10033813098753844365041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $61$ | 61.8.7.4 | $x^{8} + 488$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.4 | $x^{8} + 488$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |