Normalized defining polynomial
\( x^{16} - x^{15} - 169 x^{14} + 169 x^{13} + 11731 x^{12} - 11731 x^{11} - 430269 x^{10} + 430269 x^{9} + 8919731 x^{8} - 8919731 x^{7} - 103280269 x^{6} + 103280269 x^{5} + 610719731 x^{4} - 610719731 x^{3} - 1429280269 x^{2} + 1429280269 x + 270719731 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15319714679094816592806464576433=3^{8}\cdot 13^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(663=3\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{663}(1,·)$, $\chi_{663}(194,·)$, $\chi_{663}(196,·)$, $\chi_{663}(584,·)$, $\chi_{663}(586,·)$, $\chi_{663}(274,·)$, $\chi_{663}(157,·)$, $\chi_{663}(350,·)$, $\chi_{663}(233,·)$, $\chi_{663}(428,·)$, $\chi_{663}(623,·)$, $\chi_{663}(625,·)$, $\chi_{663}(116,·)$, $\chi_{663}(118,·)$, $\chi_{663}(311,·)$, $\chi_{663}(508,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{91527049} a^{9} + \frac{33451207}{91527049} a^{8} - \frac{90}{91527049} a^{7} - \frac{21812139}{91527049} a^{6} + \frac{2700}{91527049} a^{5} - \frac{3858819}{91527049} a^{4} - \frac{30000}{91527049} a^{3} + \frac{30870552}{91527049} a^{2} + \frac{90000}{91527049} a - \frac{38588190}{91527049}$, $\frac{1}{91527049} a^{10} - \frac{100}{91527049} a^{8} - \frac{31596126}{91527049} a^{7} + \frac{3500}{91527049} a^{6} + \frac{15079644}{91527049} a^{5} - \frac{50000}{91527049} a^{4} - \frac{27011733}{91527049} a^{3} + \frac{250000}{91527049} a^{2} + \frac{43531616}{91527049} a - \frac{200000}{91527049}$, $\frac{1}{91527049} a^{11} + \frac{18550810}{91527049} a^{8} - \frac{5500}{91527049} a^{7} + \frac{30514920}{91527049} a^{6} + \frac{220000}{91527049} a^{5} + \frac{44741612}{91527049} a^{4} - \frac{2750000}{91527049} a^{3} + \frac{18667150}{91527049} a^{2} + \frac{8800000}{91527049} a - \frac{14682942}{91527049}$, $\frac{1}{91527049} a^{12} - \frac{6600}{91527049} a^{8} - \frac{38926111}{91527049} a^{7} + \frac{308000}{91527049} a^{6} + \frac{22850415}{91527049} a^{5} - \frac{4950000}{91527049} a^{4} - \frac{33017819}{91527049} a^{3} + \frac{26400000}{91527049} a^{2} - \frac{42682133}{91527049} a - \frac{22000000}{91527049}$, $\frac{1}{91527049} a^{13} - \frac{24202099}{91527049} a^{8} - \frac{286000}{91527049} a^{7} + \frac{34781092}{91527049} a^{6} + \frac{12870000}{91527049} a^{5} + \frac{34823452}{91527049} a^{4} + \frac{11454098}{91527049} a^{3} - \frac{36250007}{91527049} a^{2} + \frac{22837706}{91527049} a + \frac{37723367}{91527049}$, $\frac{1}{91527049} a^{14} - \frac{364000}{91527049} a^{8} - \frac{38285691}{91527049} a^{7} + \frac{19110000}{91527049} a^{6} + \frac{30177766}{91527049} a^{5} + \frac{38508196}{91527049} a^{4} - \frac{15140290}{91527049} a^{3} - \frac{10540980}{91527049} a^{2} - \frac{25605784}{91527049} a - \frac{4040167}{91527049}$, $\frac{1}{91527049} a^{15} - \frac{8374357}{91527049} a^{8} - \frac{13650000}{91527049} a^{7} + \frac{16974320}{91527049} a^{6} + \frac{14510657}{91527049} a^{5} + \frac{40364713}{91527049} a^{4} - \frac{38822149}{91527049} a^{3} - \frac{12010563}{91527049} a^{2} - \frac{10723709}{91527049} a + \frac{5887736}{91527049}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6254168601.885075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||