Normalized defining polynomial
\( x^{16} - 41x^{14} + 677x^{12} - 5843x^{10} + 28585x^{8} - 79537x^{6} + 116702x^{4} - 69544x^{2} + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[16, 0]$ |
| |
| Discriminant: |
\(150351248768400000000000000\)
\(\medspace = 2^{16}\cdot 3^{12}\cdot 5^{14}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(43.26\) |
| |
| Galois root discriminant: | $2\cdot 3^{3/4}5^{7/8}29^{1/2}\approx 100.38496905417634$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1509309031}a^{14}-\frac{224586322}{1509309031}a^{12}-\frac{36399689}{1509309031}a^{10}+\frac{277455466}{1509309031}a^{8}-\frac{54505536}{1509309031}a^{6}+\frac{572580726}{1509309031}a^{4}-\frac{399038036}{1509309031}a^{2}-\frac{247327078}{1509309031}$, $\frac{1}{1509309031}a^{15}-\frac{224586322}{1509309031}a^{13}-\frac{36399689}{1509309031}a^{11}+\frac{277455466}{1509309031}a^{9}-\frac{54505536}{1509309031}a^{7}+\frac{572580726}{1509309031}a^{5}-\frac{399038036}{1509309031}a^{3}-\frac{247327078}{1509309031}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{44065}{882121}a^{14}-\frac{1630507}{882121}a^{12}+\frac{23314572}{882121}a^{10}-\frac{164292518}{882121}a^{8}+\frac{603058464}{882121}a^{6}-\frac{1094772282}{882121}a^{4}+\frac{765381860}{882121}a^{2}+\frac{534175}{882121}$, $\frac{51123103}{1509309031}a^{15}-\frac{1930280361}{1509309031}a^{13}+\frac{28464002297}{1509309031}a^{11}-\frac{210577357234}{1509309031}a^{9}+\frac{837905782321}{1509309031}a^{7}-\frac{1766289245086}{1509309031}a^{5}+\frac{1764119352491}{1509309031}a^{3}-\frac{591595470918}{1509309031}a$, $\frac{16114034}{1509309031}a^{15}-\frac{620291768}{1509309031}a^{13}+\frac{9396036949}{1509309031}a^{11}-\frac{72162358898}{1509309031}a^{9}+\frac{302459378651}{1509309031}a^{7}-\frac{687163378110}{1509309031}a^{5}+\frac{772570214010}{1509309031}a^{3}-\frac{323788157616}{1509309031}a$, $\frac{13542064}{1509309031}a^{15}-\frac{506260469}{1509309031}a^{13}+\frac{7374270380}{1509309031}a^{11}-\frac{53838445622}{1509309031}a^{9}+\frac{212372154400}{1509309031}a^{7}-\frac{452171910236}{1509309031}a^{5}+\frac{481592341288}{1509309031}a^{3}-\frac{200112145767}{1509309031}a-1$, $\frac{51123103}{1509309031}a^{15}-\frac{1930280361}{1509309031}a^{13}+\frac{28464002297}{1509309031}a^{11}-\frac{210577357234}{1509309031}a^{9}+\frac{837905782321}{1509309031}a^{7}-\frac{1766289245086}{1509309031}a^{5}+\frac{1764119352491}{1509309031}a^{3}-\frac{591595470918}{1509309031}a-1$, $\frac{51123103}{1509309031}a^{15}-\frac{36696023}{1509309031}a^{14}-\frac{1930280361}{1509309031}a^{13}+\frac{1351270161}{1509309031}a^{12}+\frac{28464002297}{1509309031}a^{11}-\frac{19195625246}{1509309031}a^{10}-\frac{210577357234}{1509309031}a^{9}+\frac{134121102151}{1509309031}a^{8}+\frac{837905782321}{1509309031}a^{7}-\frac{487432014885}{1509309031}a^{6}-\frac{1766289245086}{1509309031}a^{5}+\frac{876560904381}{1509309031}a^{4}+\frac{1764119352491}{1509309031}a^{3}-\frac{610257342449}{1509309031}a^{2}-\frac{591595470918}{1509309031}a-\frac{1816065382}{1509309031}$, $\frac{51123103}{1509309031}a^{15}+\frac{44065}{882121}a^{14}-\frac{1930280361}{1509309031}a^{13}-\frac{1630507}{882121}a^{12}+\frac{28464002297}{1509309031}a^{11}+\frac{23314572}{882121}a^{10}-\frac{210577357234}{1509309031}a^{9}-\frac{164292518}{882121}a^{8}+\frac{837905782321}{1509309031}a^{7}+\frac{603058464}{882121}a^{6}-\frac{1766289245086}{1509309031}a^{5}-\frac{1094772282}{882121}a^{4}+\frac{1764119352491}{1509309031}a^{3}+\frac{765381860}{882121}a^{2}-\frac{591595470918}{1509309031}a+\frac{534175}{882121}$, $\frac{81877905}{1509309031}a^{14}-\frac{3032299158}{1509309031}a^{12}+\frac{43402491946}{1509309031}a^{10}-\frac{306143892264}{1509309031}a^{8}+\frac{1124235649334}{1509309031}a^{6}-\frac{2039153690675}{1509309031}a^{4}+\frac{1422343281558}{1509309031}a^{2}-\frac{349748002}{1509309031}$, $\frac{24427891}{1509309031}a^{14}-\frac{908833374}{1509309031}a^{12}+\frac{13103416162}{1509309031}a^{10}-\frac{93514459262}{1509309031}a^{8}+\frac{349940795638}{1509309031}a^{6}-\frac{654328197122}{1509309031}a^{4}+\frac{480366840880}{1509309031}a^{2}-\frac{3900872327}{1509309031}$, $\frac{96157089}{1509309031}a^{14}-\frac{3556476063}{1509309031}a^{12}+\frac{50824650733}{1509309031}a^{10}-\frac{357910867559}{1509309031}a^{8}+\frac{1313144568138}{1509309031}a^{6}-\frac{2385128030399}{1509309031}a^{4}+\frac{1671256824125}{1509309031}a^{2}+\frac{7524871639}{1509309031}$, $\frac{62059662}{1509309031}a^{15}-\frac{112091238}{1509309031}a^{14}-\frac{2272265951}{1509309031}a^{13}+\frac{4141067638}{1509309031}a^{12}+\frac{31939761613}{1509309031}a^{11}-\frac{59086857938}{1509309031}a^{10}-\frac{218503203217}{1509309031}a^{9}+\frac{415225600449}{1509309031}a^{8}+\frac{758013215535}{1509309031}a^{7}-\frac{1519265046789}{1509309031}a^{6}-\frac{1204731381480}{1509309031}a^{5}+\frac{2749716278883}{1509309031}a^{4}+\frac{462233857812}{1509309031}a^{3}-\frac{1919825704909}{1509309031}a^{2}+\frac{435733732210}{1509309031}a-\frac{2730038807}{1509309031}$, $\frac{29113655}{1509309031}a^{15}-\frac{67606604}{1509309031}a^{14}-\frac{1236033787}{1509309031}a^{13}+\frac{2502605216}{1509309031}a^{12}+\frac{21273991107}{1509309031}a^{11}-\frac{35810300662}{1509309031}a^{10}-\frac{192417101095}{1509309031}a^{9}+\frac{252674955379}{1509309031}a^{8}+\frac{989046424974}{1509309031}a^{7}-\frac{929775427953}{1509309031}a^{6}-\frac{2890890882620}{1509309031}a^{5}+\frac{1696887417676}{1509309031}a^{4}+\frac{4445695145977}{1509309031}a^{3}-\frac{1203399102427}{1509309031}a^{2}-\frac{2766861808454}{1509309031}a+\frac{10895073527}{1509309031}$, $\frac{35009069}{1509309031}a^{15}+\frac{46147482}{1509309031}a^{14}-\frac{1309988593}{1509309031}a^{13}-\frac{1693360055}{1509309031}a^{12}+\frac{19067965348}{1509309031}a^{11}+\frac{23946573197}{1509309031}a^{10}-\frac{138414998336}{1509309031}a^{9}-\frac{166396441075}{1509309031}a^{8}+\frac{535446403670}{1509309031}a^{7}+\frac{601149876106}{1509309031}a^{6}-\frac{1079125866976}{1509309031}a^{5}-\frac{1075150836692}{1509309031}a^{4}+\frac{991549138481}{1509309031}a^{3}+\frac{746051304135}{1509309031}a^{2}-\frac{269316622333}{1509309031}a-\frac{1715046023}{1509309031}$, $\frac{17239096}{1509309031}a^{15}-\frac{9451459}{1509309031}a^{14}-\frac{732014022}{1509309031}a^{13}+\frac{342089894}{1509309031}a^{12}+\frac{12589687416}{1509309031}a^{11}-\frac{4750947951}{1509309031}a^{10}-\frac{113606005263}{1509309031}a^{9}+\frac{32275338924}{1509309031}a^{8}+\frac{581290826653}{1509309031}a^{7}-\frac{113717861221}{1509309031}a^{6}-\frac{1687206031761}{1509309031}a^{5}+\frac{198589932311}{1509309031}a^{4}+\frac{2571597682649}{1509309031}a^{3}-\frac{134284652655}{1509309031}a^{2}-\frac{1586145272177}{1509309031}a-\frac{5524742781}{1509309031}$, $\frac{2689680}{52045139}a^{15}-\frac{218397034}{1509309031}a^{14}-\frac{101864564}{52045139}a^{13}+\frac{8082200170}{1509309031}a^{12}+\frac{1509991164}{52045139}a^{11}-\frac{115592766046}{1509309031}a^{10}-\frac{11276451653}{52045139}a^{9}+\frac{814883951975}{1509309031}a^{8}+\frac{45658543210}{52045139}a^{7}-\frac{2993441491761}{1509309031}a^{6}-\frac{99547763736}{52045139}a^{5}+\frac{5443198166680}{1509309031}a^{4}+\frac{106656765463}{52045139}a^{3}-\frac{3822535827347}{1509309031}a^{2}-\frac{42242002291}{52045139}a+\frac{4539199584}{1509309031}$
|
| |
| Regulator: | \( 61330889.5255 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 61330889.5255 \cdot 1}{2\cdot\sqrt{150351248768400000000000000}}\cr\approx \mathstrut & 0.163898764125 \end{aligned}\] (assuming GRH)
Galois group
$\OD_{16}:C_2^2$ (as 16T99):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $\OD_{16}:C_2^2$ |
| Character table for $\OD_{16}:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), 8.8.47897578125.1, 8.8.12261780000000.3, \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.16.126445400214224400000000000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.8.2.16a1.1 | $x^{16} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 5 x^{8} + 2 x^{7} + 3 x^{6} + 2 x^{5} + 5 x^{4} + 4 x^{3} + 4 x^{2} + 5$ | $2$ | $8$ | $16$ | $C_8\times C_2$ | $$[2]^{8}$$ |
|
\(3\)
| 3.4.4.12a1.1 | $x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 3 x^{2} + 16$ | $4$ | $4$ | $12$ | $C_8: C_2$ | $$[\ ]_{4}^{4}$$ |
|
\(5\)
| 5.2.8.14a1.5 | $x^{16} + 32 x^{15} + 464 x^{14} + 4032 x^{13} + 23408 x^{12} + 95872 x^{11} + 285376 x^{10} + 627456 x^{9} + 1027168 x^{8} + 1254912 x^{7} + 1141504 x^{6} + 766976 x^{5} + 374528 x^{4} + 129024 x^{3} + 29696 x^{2} + 4106 x + 266$ | $8$ | $2$ | $14$ | $C_8: C_2$ | $$[\ ]_{8}^{2}$$ |
|
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |