Normalized defining polynomial
\( x^{16} - 2 x^{15} - 122 x^{14} + 406 x^{13} + 3900 x^{12} - 13424 x^{11} - 53257 x^{10} + 164608 x^{9} + 375226 x^{8} - 961140 x^{7} - 1450125 x^{6} + 2843520 x^{5} + 3030830 x^{4} - 4046660 x^{3} - 3118060 x^{2} + 2163460 x + 1223095 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(147108257121214334362554931640625=3^{4}\cdot 5^{14}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a$, $\frac{1}{60965364311030049644290102601805080552} a^{15} - \frac{4214182760059863434609587098332829127}{60965364311030049644290102601805080552} a^{14} + \frac{2757879202368200418272931497680350795}{60965364311030049644290102601805080552} a^{13} - \frac{7612318342938863524913104749903944431}{60965364311030049644290102601805080552} a^{12} - \frac{6965961078017859818499663241898566105}{60965364311030049644290102601805080552} a^{11} + \frac{3417099946702751679787283997482122599}{60965364311030049644290102601805080552} a^{10} - \frac{6110450827167937089415667664469416841}{30482682155515024822145051300902540276} a^{9} + \frac{7236790732786919828094171658817839571}{30482682155515024822145051300902540276} a^{8} + \frac{139490521721998673126288396657887691}{7620670538878756205536262825225635069} a^{7} - \frac{3282651146032372723099797325581593598}{7620670538878756205536262825225635069} a^{6} + \frac{12393718013292905753588541629444037327}{60965364311030049644290102601805080552} a^{5} - \frac{28294944113902967513750075788307827035}{60965364311030049644290102601805080552} a^{4} + \frac{4615655663054492238941429477987431063}{60965364311030049644290102601805080552} a^{3} - \frac{25345916220131078938030884496080203429}{60965364311030049644290102601805080552} a^{2} - \frac{16511356548811583004051163398430407439}{60965364311030049644290102601805080552} a - \frac{5077146523434008373553798941649273143}{60965364311030049644290102601805080552}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28733573656.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), 4.4.3048625.2, 4.4.3048625.1, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.9294114390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |