Normalized defining polynomial
\( x^{16} - 5 x^{15} - 332 x^{14} + 1473 x^{13} + 38365 x^{12} - 128109 x^{11} - 2026194 x^{10} + 3852972 x^{9} + 53239647 x^{8} - 18701219 x^{7} - 668393921 x^{6} - 732038184 x^{5} + 2730181967 x^{4} + 7553452254 x^{3} + 7277621373 x^{2} + 2991300154 x + 410069071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1406190811803906514680942949803142045313=17^{15}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $279.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31874916053439751006733544828352725415458970530048718587411115980637} a^{15} + \frac{2274107284253035661951343747272000912639045234268812900875699789677}{31874916053439751006733544828352725415458970530048718587411115980637} a^{14} - \frac{12744646952280441714661403988232492020383106810059712927344427155368}{31874916053439751006733544828352725415458970530048718587411115980637} a^{13} + \frac{13294137692464066074163405338435255546488193924857434907895378343862}{31874916053439751006733544828352725415458970530048718587411115980637} a^{12} - \frac{7898799415663777077472421312398025482172076624248810985479813312151}{31874916053439751006733544828352725415458970530048718587411115980637} a^{11} + \frac{2372621209877480646165577008537363791641898512156486282429032559906}{31874916053439751006733544828352725415458970530048718587411115980637} a^{10} + \frac{13228230858193600907000248640426899071739577427249373795217394109446}{31874916053439751006733544828352725415458970530048718587411115980637} a^{9} + \frac{11447181360950390624824532760633634148989101279581729319665735320954}{31874916053439751006733544828352725415458970530048718587411115980637} a^{8} + \frac{15730063303727072005509929381493652801438520787631546383345397864365}{31874916053439751006733544828352725415458970530048718587411115980637} a^{7} + \frac{1423912729479272323529873250659508673225182673400403008768811221957}{31874916053439751006733544828352725415458970530048718587411115980637} a^{6} - \frac{14751546628791365323492307189910595616841958553277528871889608198118}{31874916053439751006733544828352725415458970530048718587411115980637} a^{5} - \frac{5143178893942906706264531131320341334280035947943798739855469301527}{31874916053439751006733544828352725415458970530048718587411115980637} a^{4} + \frac{2151299322334183749046002075861262483940784552169382699719697534888}{31874916053439751006733544828352725415458970530048718587411115980637} a^{3} - \frac{5942223379334535407582636554292241247598040260560900389353329411261}{31874916053439751006733544828352725415458970530048718587411115980637} a^{2} + \frac{12922051917023180871890920393812944820521175204507759148805833111916}{31874916053439751006733544828352725415458970530048718587411115980637} a + \frac{3404639881038766022573372691003196742598485432979396680771564651296}{31874916053439751006733544828352725415458970530048718587411115980637}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34530035498800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.3237769502871713.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $53$ | 53.8.6.4 | $x^{8} + 742 x^{4} + 351125$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 53.8.6.3 | $x^{8} - 53 x^{4} + 14045$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |