Properties

Label 16.16.1398629213...2672.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{59}\cdot 113^{6}\cdot 1039^{4}$
Root discriminant $430.63$
Ramified primes $2, 113, 1039$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T942

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29761106423144258, 0, -11324769311543544, 0, 701771263583088, 0, -14260732371956, 0, 126773588461, 0, -583460828, 0, 1461230, 0, -1896, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 1896*x^14 + 1461230*x^12 - 583460828*x^10 + 126773588461*x^8 - 14260732371956*x^6 + 701771263583088*x^4 - 11324769311543544*x^2 + 29761106423144258)
 
gp: K = bnfinit(x^16 - 1896*x^14 + 1461230*x^12 - 583460828*x^10 + 126773588461*x^8 - 14260732371956*x^6 + 701771263583088*x^4 - 11324769311543544*x^2 + 29761106423144258, 1)
 

Normalized defining polynomial

\( x^{16} - 1896 x^{14} + 1461230 x^{12} - 583460828 x^{10} + 126773588461 x^{8} - 14260732371956 x^{6} + 701771263583088 x^{4} - 11324769311543544 x^{2} + 29761106423144258 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1398629213800614161925350535491003636252672=2^{59}\cdot 113^{6}\cdot 1039^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $430.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 113, 1039$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1039} a^{10} + \frac{182}{1039} a^{8} + \frac{396}{1039} a^{6} + \frac{12}{1039} a^{4} + \frac{344}{1039} a^{2}$, $\frac{1}{1039} a^{11} + \frac{182}{1039} a^{9} + \frac{396}{1039} a^{7} + \frac{12}{1039} a^{5} + \frac{344}{1039} a^{3}$, $\frac{1}{1079521} a^{12} + \frac{182}{1079521} a^{10} - \frac{319616}{1079521} a^{8} + \frac{303400}{1079521} a^{6} + \frac{64762}{1079521} a^{4} - \frac{156}{1039} a^{2}$, $\frac{1}{1079521} a^{13} + \frac{182}{1079521} a^{11} - \frac{319616}{1079521} a^{9} + \frac{303400}{1079521} a^{7} + \frac{64762}{1079521} a^{5} - \frac{156}{1039} a^{3}$, $\frac{1}{40713782736730555273049628023433594994202684711} a^{14} + \frac{18773509151169873599810607622085271812753}{40713782736730555273049628023433594994202684711} a^{12} + \frac{18379660534752481659275668384119819497705139}{40713782736730555273049628023433594994202684711} a^{10} + \frac{14055604864056350996241108620361811799459893007}{40713782736730555273049628023433594994202684711} a^{8} + \frac{6464846894720490696735085412145684585669507269}{40713782736730555273049628023433594994202684711} a^{6} + \frac{4196649881475692180703129325495527428508232}{39185546426112180243551133805037146288934249} a^{4} + \frac{9966656635482114801178169183870405607629}{37714674134852916500049214441806685552391} a^{2} - \frac{83103938336254489796339293014103163}{321230200370104989481455232156572313}$, $\frac{1}{40713782736730555273049628023433594994202684711} a^{15} + \frac{18773509151169873599810607622085271812753}{40713782736730555273049628023433594994202684711} a^{13} + \frac{18379660534752481659275668384119819497705139}{40713782736730555273049628023433594994202684711} a^{11} + \frac{14055604864056350996241108620361811799459893007}{40713782736730555273049628023433594994202684711} a^{9} + \frac{6464846894720490696735085412145684585669507269}{40713782736730555273049628023433594994202684711} a^{7} + \frac{4196649881475692180703129325495527428508232}{39185546426112180243551133805037146288934249} a^{5} + \frac{9966656635482114801178169183870405607629}{37714674134852916500049214441806685552391} a^{3} - \frac{83103938336254489796339293014103163}{321230200370104989481455232156572313} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12689034991800000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T942:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n942
Character table for t16n942 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.26778533888.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ $16$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.30.48$x^{8} + 8 x^{7} + 16 x^{6} + 16 x^{4} + 30$$8$$1$$30$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 3, 7/2, 4, 17/4, 19/4]$
2.8.29.71$x^{8} + 20 x^{6} + 28 x^{4} + 14$$8$$1$$29$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 3, 7/2, 4, 17/4, 19/4]$
$113$113.4.2.2$x^{4} - 113 x^{2} + 127690$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
113.4.2.1$x^{4} + 2147 x^{2} + 1276900$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
113.4.2.1$x^{4} + 2147 x^{2} + 1276900$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
1039Data not computed