Properties

Label 16.16.1388709817...7872.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{67}\cdot 7^{14}\cdot 193^{4}$
Root discriminant $372.75$
Ramified primes $2, 7, 193$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1188

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8702324742272, 0, -13526929651200, 0, 2450266635264, 0, -158131934464, 0, 4353446608, 0, -52689504, 0, 312088, 0, -896, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 896*x^14 + 312088*x^12 - 52689504*x^10 + 4353446608*x^8 - 158131934464*x^6 + 2450266635264*x^4 - 13526929651200*x^2 + 8702324742272)
 
gp: K = bnfinit(x^16 - 896*x^14 + 312088*x^12 - 52689504*x^10 + 4353446608*x^8 - 158131934464*x^6 + 2450266635264*x^4 - 13526929651200*x^2 + 8702324742272, 1)
 

Normalized defining polynomial

\( x^{16} - 896 x^{14} + 312088 x^{12} - 52689504 x^{10} + 4353446608 x^{8} - 158131934464 x^{6} + 2450266635264 x^{4} - 13526929651200 x^{2} + 8702324742272 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(138870981735380017471819830544433646927872=2^{67}\cdot 7^{14}\cdot 193^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $372.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 193$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{56} a^{8}$, $\frac{1}{56} a^{9}$, $\frac{1}{21616} a^{10} - \frac{31}{5404} a^{8} - \frac{12}{193} a^{6} - \frac{9}{386} a^{4} + \frac{52}{193} a^{2}$, $\frac{1}{21616} a^{11} - \frac{31}{5404} a^{9} - \frac{12}{193} a^{7} - \frac{9}{386} a^{5} - \frac{89}{386} a^{3}$, $\frac{1}{8343776} a^{12} - \frac{31}{2085944} a^{10} + \frac{16841}{2085944} a^{8} + \frac{4531}{74498} a^{6} + \frac{7939}{37249} a^{4} + \frac{88}{193} a^{2}$, $\frac{1}{8343776} a^{13} - \frac{31}{2085944} a^{11} + \frac{16841}{2085944} a^{9} + \frac{4531}{74498} a^{7} - \frac{5493}{148996} a^{5} - \frac{17}{386} a^{3}$, $\frac{1}{2639408007652964930513492552128} a^{14} - \frac{52120751923810914958059}{1319704003826482465256746276064} a^{12} + \frac{280593622021079974528417}{47132285850945802330598081288} a^{10} + \frac{41323108258258536526475432}{5891535731368225291324760161} a^{8} + \frac{551078720235031140912318459}{23566142925472901165299040644} a^{6} - \frac{2749203875599846615241337}{61052183744748448614764354} a^{4} - \frac{62866513159925195249707}{158166279131472664805089} a^{2} - \frac{345465538162766714074}{819514399644936087073}$, $\frac{1}{2639408007652964930513492552128} a^{15} - \frac{52120751923810914958059}{1319704003826482465256746276064} a^{13} + \frac{280593622021079974528417}{47132285850945802330598081288} a^{11} + \frac{41323108258258536526475432}{5891535731368225291324760161} a^{9} + \frac{551078720235031140912318459}{23566142925472901165299040644} a^{7} - \frac{2749203875599846615241337}{61052183744748448614764354} a^{5} + \frac{32433252811622274305675}{316332558262945329610178} a^{3} - \frac{345465538162766714074}{819514399644936087073} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7194344670190000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1188:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 52 conjugacy class representatives for t16n1188 are not computed
Character table for t16n1188 is not computed

Intermediate fields

\(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.3947645370368.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.8.7.2$x^{8} - 7$$8$$1$$7$$D_{8}$$[\ ]_{8}^{2}$
7.8.7.2$x^{8} - 7$$8$$1$$7$$D_{8}$$[\ ]_{8}^{2}$
193Data not computed