Normalized defining polynomial
\( x^{16} - 896 x^{14} + 312088 x^{12} - 52689504 x^{10} + 4353446608 x^{8} - 158131934464 x^{6} + 2450266635264 x^{4} - 13526929651200 x^{2} + 8702324742272 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138870981735380017471819830544433646927872=2^{67}\cdot 7^{14}\cdot 193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $372.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{56} a^{8}$, $\frac{1}{56} a^{9}$, $\frac{1}{21616} a^{10} - \frac{31}{5404} a^{8} - \frac{12}{193} a^{6} - \frac{9}{386} a^{4} + \frac{52}{193} a^{2}$, $\frac{1}{21616} a^{11} - \frac{31}{5404} a^{9} - \frac{12}{193} a^{7} - \frac{9}{386} a^{5} - \frac{89}{386} a^{3}$, $\frac{1}{8343776} a^{12} - \frac{31}{2085944} a^{10} + \frac{16841}{2085944} a^{8} + \frac{4531}{74498} a^{6} + \frac{7939}{37249} a^{4} + \frac{88}{193} a^{2}$, $\frac{1}{8343776} a^{13} - \frac{31}{2085944} a^{11} + \frac{16841}{2085944} a^{9} + \frac{4531}{74498} a^{7} - \frac{5493}{148996} a^{5} - \frac{17}{386} a^{3}$, $\frac{1}{2639408007652964930513492552128} a^{14} - \frac{52120751923810914958059}{1319704003826482465256746276064} a^{12} + \frac{280593622021079974528417}{47132285850945802330598081288} a^{10} + \frac{41323108258258536526475432}{5891535731368225291324760161} a^{8} + \frac{551078720235031140912318459}{23566142925472901165299040644} a^{6} - \frac{2749203875599846615241337}{61052183744748448614764354} a^{4} - \frac{62866513159925195249707}{158166279131472664805089} a^{2} - \frac{345465538162766714074}{819514399644936087073}$, $\frac{1}{2639408007652964930513492552128} a^{15} - \frac{52120751923810914958059}{1319704003826482465256746276064} a^{13} + \frac{280593622021079974528417}{47132285850945802330598081288} a^{11} + \frac{41323108258258536526475432}{5891535731368225291324760161} a^{9} + \frac{551078720235031140912318459}{23566142925472901165299040644} a^{7} - \frac{2749203875599846615241337}{61052183744748448614764354} a^{5} + \frac{32433252811622274305675}{316332558262945329610178} a^{3} - \frac{345465538162766714074}{819514399644936087073} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7194344670190000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1188 are not computed |
| Character table for t16n1188 is not computed |
Intermediate fields
| \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.3947645370368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.2 | $x^{8} - 7$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |
| 193 | Data not computed | ||||||