Properties

Label 16.16.137...936.2
Degree $16$
Signature $[16, 0]$
Discriminant $1.379\times 10^{24}$
Root discriminant \(32.26\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $QD_{16}$ (as 16T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9)
 
gp: K = bnfinit(y^16 - 24*y^14 + 216*y^12 - 936*y^10 + 2094*y^8 - 2376*y^6 + 1224*y^4 - 216*y^2 + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9)
 

\( x^{16} - 24x^{14} + 216x^{12} - 936x^{10} + 2094x^{8} - 2376x^{6} + 1224x^{4} - 216x^{2} + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[16, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1378596953991976568487936\) \(\medspace = 2^{58}\cdot 3^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{29/8}3^{7/8}\approx 32.263749133641326$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{6}a^{8}-\frac{1}{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a$, $\frac{1}{30}a^{10}+\frac{1}{30}a^{8}+\frac{1}{5}a^{6}+\frac{2}{5}a^{4}-\frac{1}{10}a^{2}-\frac{1}{10}$, $\frac{1}{60}a^{11}-\frac{1}{60}a^{10}+\frac{1}{60}a^{9}-\frac{1}{60}a^{8}+\frac{1}{10}a^{7}-\frac{1}{10}a^{6}-\frac{3}{10}a^{5}+\frac{3}{10}a^{4}-\frac{1}{20}a^{3}+\frac{1}{20}a^{2}-\frac{1}{20}a+\frac{1}{20}$, $\frac{1}{60}a^{12}-\frac{1}{12}a^{8}+\frac{1}{10}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}+\frac{1}{20}$, $\frac{1}{60}a^{13}-\frac{1}{12}a^{9}+\frac{1}{10}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}+\frac{1}{20}a$, $\frac{1}{180}a^{14}-\frac{1}{60}a^{10}-\frac{1}{15}a^{8}-\frac{11}{60}a^{6}-\frac{1}{5}a^{4}+\frac{3}{20}a^{2}-\frac{1}{5}$, $\frac{1}{180}a^{15}-\frac{1}{60}a^{10}-\frac{1}{20}a^{9}-\frac{1}{60}a^{8}-\frac{1}{12}a^{7}-\frac{1}{10}a^{6}-\frac{1}{2}a^{5}+\frac{3}{10}a^{4}+\frac{1}{10}a^{3}+\frac{1}{20}a^{2}-\frac{1}{4}a+\frac{1}{20}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{45}a^{14}-\frac{11}{20}a^{12}+\frac{77}{15}a^{10}-\frac{1379}{60}a^{8}+\frac{155}{3}a^{6}-\frac{1093}{20}a^{4}+21a^{2}-\frac{11}{20}$, $\frac{1}{18}a^{14}-\frac{77}{60}a^{12}+\frac{109}{10}a^{10}-\frac{867}{20}a^{8}+\frac{1288}{15}a^{6}-\frac{1639}{20}a^{4}+\frac{164}{5}a^{2}-\frac{71}{20}$, $\frac{1}{90}a^{14}-\frac{17}{60}a^{12}+\frac{83}{30}a^{10}-\frac{53}{4}a^{8}+\frac{491}{15}a^{6}-\frac{771}{20}a^{4}+\frac{77}{5}a^{2}+\frac{7}{20}$, $\frac{2}{45}a^{14}-\frac{31}{30}a^{12}+\frac{133}{15}a^{10}-\frac{538}{15}a^{8}+\frac{220}{3}a^{6}-\frac{751}{10}a^{4}+\frac{171}{5}a^{2}-\frac{21}{5}$, $\frac{1}{45}a^{15}+\frac{1}{36}a^{14}-\frac{3}{5}a^{13}-\frac{2}{3}a^{12}+\frac{25}{4}a^{11}+\frac{179}{30}a^{10}-\frac{639}{20}a^{9}-\frac{1517}{60}a^{8}+\frac{1261}{15}a^{7}+\frac{3173}{60}a^{6}-109a^{5}-\frac{252}{5}a^{4}+\frac{1183}{20}a^{3}+\frac{181}{10}a^{2}-\frac{141}{20}a-\frac{53}{20}$, $\frac{1}{6}a^{15}+\frac{13}{180}a^{14}-\frac{119}{30}a^{13}-\frac{17}{10}a^{12}+\frac{141}{4}a^{11}+\frac{89}{6}a^{10}-\frac{1799}{12}a^{9}-\frac{1223}{20}a^{8}+\frac{3267}{10}a^{7}+\frac{7573}{60}a^{6}-\frac{715}{2}a^{5}-\frac{251}{2}a^{4}+\frac{695}{4}a^{3}+\frac{523}{10}a^{2}-\frac{503}{20}a-\frac{117}{20}$, $\frac{1}{90}a^{15}+\frac{1}{90}a^{14}-\frac{7}{30}a^{13}-\frac{7}{30}a^{12}+\frac{97}{60}a^{11}+\frac{97}{60}a^{10}-\frac{73}{20}a^{9}-\frac{73}{20}a^{8}-\frac{101}{30}a^{7}-\frac{101}{30}a^{6}+\frac{219}{10}a^{5}+\frac{219}{10}a^{4}-\frac{383}{20}a^{3}-\frac{383}{20}a^{2}-\frac{11}{20}a+\frac{9}{20}$, $\frac{1}{12}a^{15}-\frac{1}{18}a^{14}-\frac{119}{60}a^{13}+\frac{13}{10}a^{12}+\frac{88}{5}a^{11}-\frac{673}{60}a^{10}-\frac{372}{5}a^{9}+\frac{2717}{60}a^{8}+\frac{3179}{20}a^{7}-\frac{541}{6}a^{6}-\frac{3281}{20}a^{5}+\frac{849}{10}a^{4}+\frac{677}{10}a^{3}-\frac{637}{20}a^{2}-\frac{11}{2}a+\frac{41}{20}$, $\frac{13}{90}a^{15}-\frac{1}{45}a^{14}-\frac{209}{60}a^{13}+\frac{3}{5}a^{12}+\frac{1891}{60}a^{11}-\frac{25}{4}a^{10}-\frac{4111}{30}a^{9}+\frac{639}{20}a^{8}+\frac{9151}{30}a^{7}-\frac{1261}{15}a^{6}-\frac{6741}{20}a^{5}+109a^{4}+\frac{3211}{20}a^{3}-\frac{1183}{20}a^{2}-\frac{45}{2}a+\frac{141}{20}$, $\frac{7}{45}a^{15}+\frac{13}{180}a^{14}-\frac{11}{3}a^{13}-\frac{26}{15}a^{12}+\frac{641}{20}a^{11}+\frac{467}{30}a^{10}-\frac{2647}{20}a^{9}-\frac{803}{12}a^{8}+\frac{8189}{30}a^{7}+\frac{1757}{12}a^{6}-\frac{2669}{10}a^{5}-\frac{786}{5}a^{4}+\frac{1973}{20}a^{3}+\frac{691}{10}a^{2}-\frac{83}{20}a-\frac{103}{20}$, $\frac{13}{90}a^{15}+\frac{1}{45}a^{14}-\frac{209}{60}a^{13}-\frac{3}{5}a^{12}+\frac{1891}{60}a^{11}+\frac{25}{4}a^{10}-\frac{4111}{30}a^{9}-\frac{639}{20}a^{8}+\frac{9151}{30}a^{7}+\frac{1261}{15}a^{6}-\frac{6741}{20}a^{5}-109a^{4}+\frac{3211}{20}a^{3}+\frac{1183}{20}a^{2}-\frac{45}{2}a-\frac{141}{20}$, $\frac{1}{12}a^{15}+\frac{1}{18}a^{14}-\frac{119}{60}a^{13}-\frac{13}{10}a^{12}+\frac{88}{5}a^{11}+\frac{673}{60}a^{10}-\frac{372}{5}a^{9}-\frac{2717}{60}a^{8}+\frac{3179}{20}a^{7}+\frac{541}{6}a^{6}-\frac{3281}{20}a^{5}-\frac{849}{10}a^{4}+\frac{677}{10}a^{3}+\frac{637}{20}a^{2}-\frac{11}{2}a-\frac{41}{20}$, $\frac{1}{45}a^{15}+\frac{1}{36}a^{14}-\frac{29}{60}a^{13}-\frac{7}{12}a^{12}+\frac{56}{15}a^{11}+\frac{251}{60}a^{10}-\frac{773}{60}a^{9}-\frac{719}{60}a^{8}+\frac{65}{3}a^{7}+\frac{641}{60}a^{6}-\frac{409}{20}a^{5}+\frac{129}{20}a^{4}+\frac{66}{5}a^{3}-\frac{221}{20}a^{2}-\frac{73}{20}a+\frac{29}{20}$, $\frac{1}{9}a^{15}-\frac{1}{45}a^{14}-\frac{53}{20}a^{13}+\frac{13}{30}a^{12}+\frac{473}{20}a^{11}-\frac{157}{60}a^{10}-\frac{3043}{30}a^{9}+\frac{47}{12}a^{8}+\frac{673}{3}a^{7}+\frac{161}{15}a^{6}-\frac{4999}{20}a^{5}-\frac{339}{10}a^{4}+\frac{2411}{20}a^{3}+\frac{499}{20}a^{2}-\frac{149}{10}a-\frac{77}{20}$, $\frac{1}{6}a^{15}-\frac{1}{45}a^{14}-\frac{119}{30}a^{13}+\frac{3}{5}a^{12}+\frac{141}{4}a^{11}-\frac{25}{4}a^{10}-\frac{1799}{12}a^{9}+\frac{639}{20}a^{8}+\frac{3267}{10}a^{7}-\frac{1261}{15}a^{6}-\frac{715}{2}a^{5}+109a^{4}+\frac{695}{4}a^{3}-\frac{1183}{20}a^{2}-\frac{503}{20}a+\frac{161}{20}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12887977.1035 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 12887977.1035 \cdot 1}{2\cdot\sqrt{1378596953991976568487936}}\cr\approx \mathstrut & 0.359679787955 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 24*x^14 + 216*x^12 - 936*x^10 + 2094*x^8 - 2376*x^6 + 1224*x^4 - 216*x^2 + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\SD_{16}$ (as 16T12):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16
The 7 conjugacy class representatives for $QD_{16}$
Character table for $QD_{16}$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.27648.1 x2, 4.4.13824.1 x2, 8.8.3057647616.1, 8.8.587068342272.1 x4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 sibling: 8.8.587068342272.1
Minimal sibling: 8.8.587068342272.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.2.0.1}{2} }^{8}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.16.58.3$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 6 x^{8} + 12 x^{4} + 8 x^{2} + 14$$16$$1$$58$$QD_{16}$$[2, 3, 7/2, 9/2]$
\(3\) Copy content Toggle raw display 3.16.14.2$x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34188 x^{9} + 53458 x^{8} + 68592 x^{7} + 71008 x^{6} + 56896 x^{5} + 33488 x^{4} + 14784 x^{3} + 6308 x^{2} + 2732 x + 661$$8$$2$$14$$QD_{16}$$[\ ]_{8}^{2}$