Normalized defining polynomial
\( x^{16} - 464 x^{14} - 120 x^{13} + 87302 x^{12} + 54208 x^{11} - 8499648 x^{10} - 9347912 x^{9} + 448690771 x^{8} + 774198304 x^{7} - 11964273276 x^{6} - 30845655536 x^{5} + 114829145270 x^{4} + 473110428024 x^{3} + 393968857948 x^{2} - 103460794152 x - 126146235134 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1364873065607290683946275468103122944=2^{48}\cdot 449^{2}\cdot 1889^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{15} - \frac{13209542132891098163768552382182302744445600325388398660250718963103419210935}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{14} + \frac{2553836758101200836711971605820532277070097532915012370772176151964280738569}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{13} - \frac{5717808682122466254748338824467894727302653944295288739881583323916392342499}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{12} + \frac{11871518516927979415356915205088738667985294511077284965851315758580177876386}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{11} + \frac{12017037134748624965497596113770226848216828915452893008676913474101283377314}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{10} + \frac{5578248294033835898365972525994204982336507537044518422702093801906820471253}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{9} - \frac{2696686860795062810346243085063567223115390717542206800950287411271645844587}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{8} + \frac{9805315989985724099252340796870551012599177448851283941857750496851571730563}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{7} + \frac{5670015192674314510967166333253812971531171439960753538917292521884985464651}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{6} - \frac{4271392596897805942802520894754881124805913793575415300457877741091740185214}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{5} - \frac{12545573936787429150116779377775106124655930796694173232252784229566606259701}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{4} - \frac{13755305353224974713321041283800850676264882401459370572005860787060138668205}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{3} - \frac{12509181902277537160518942726539837334646871914556707806853893759979020546360}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a^{2} + \frac{744732601945225644514743282327867315828293397730553058321433101456435183483}{27924015905140887822671301071738207736187920148826738710419034684980690435319} a + \frac{7340423118520557734030337727503973183291573907513663920465306914538979138075}{27924015905140887822671301071738207736187920148826738710419034684980690435319}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22889846170400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||