Normalized defining polynomial
\( x^{16} - 492 x^{14} - 96 x^{13} + 95858 x^{12} + 32376 x^{11} - 9438176 x^{10} - 4234648 x^{9} + 498003651 x^{8} + 289793200 x^{7} - 13786393584 x^{6} - 11380691704 x^{5} + 180053223426 x^{4} + 217601183232 x^{3} - 762305657052 x^{2} - 1378932819352 x - 573429908638 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1364873065607290683946275468103122944=2^{48}\cdot 449^{2}\cdot 1889^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{449} a^{12} - \frac{217}{449} a^{11} + \frac{159}{449} a^{10} + \frac{28}{449} a^{9} + \frac{196}{449} a^{8} + \frac{54}{449} a^{7} + \frac{45}{449} a^{6} - \frac{79}{449} a^{5} - \frac{46}{449} a^{4} + \frac{124}{449} a^{3} + \frac{147}{449} a^{2} + \frac{68}{449} a - \frac{51}{449}$, $\frac{1}{449} a^{13} + \frac{215}{449} a^{11} - \frac{42}{449} a^{10} - \frac{14}{449} a^{9} - \frac{69}{449} a^{8} + \frac{89}{449} a^{7} - \frac{192}{449} a^{6} - \frac{127}{449} a^{5} + \frac{20}{449} a^{4} + \frac{115}{449} a^{3} + \frac{88}{449} a^{2} - \frac{112}{449} a + \frac{158}{449}$, $\frac{1}{449} a^{14} - \frac{83}{449} a^{11} - \frac{75}{449} a^{10} + \frac{197}{449} a^{9} + \frac{155}{449} a^{8} - \frac{128}{449} a^{7} + \frac{76}{449} a^{6} - \frac{57}{449} a^{5} + \frac{127}{449} a^{4} - \frac{81}{449} a^{3} + \frac{162}{449} a^{2} - \frac{94}{449} a + \frac{189}{449}$, $\frac{1}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{15} - \frac{353085896296137833398840262454363501203927689086961087132603582834694101}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{14} + \frac{97559163956307224121686609882201150086489884393041605714274707261934092}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{13} + \frac{259940247095323003877048087875645620333362949698130627869216961499757976}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{12} - \frac{71053370655409370102387187390144118275053689309458162372758935404417458016}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{11} - \frac{205964000211454416822870259828327282882584510313305962927692189309822873358}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{10} - \frac{238716491430232625077851131126082793961158585034774138626289475504278793110}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{9} + \frac{45702515615161767691899007292705786686788762273619566475279499699010440379}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{8} + \frac{178097986048553117447988889333583849051284988765290457140044621814323669874}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{7} - \frac{164531080817696230051554256551770498744776600946058912568375113140430509595}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{6} + \frac{83736548661550702376634863750553589066109763091667743546529936243854826}{2191475669389254166685840562488765194793470823327641465643289454688738767} a^{5} + \frac{47643892649153353580372151802653396567964846702887296851587679369895425405}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{4} + \frac{37084247006105209574760125580677208340360099409211587097054808924003909712}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{3} + \frac{148192236125597095604208148771106064960045781357234131489296096204544705575}{488699074273803679170942445434994638438943993602064046838453548395588745041} a^{2} + \frac{197686820532420205872601741572491182491363810247566226480072868876340091081}{488699074273803679170942445434994638438943993602064046838453548395588745041} a + \frac{94605664312862484820671450462647333788213951947369334206266534113042329122}{488699074273803679170942445434994638438943993602064046838453548395588745041}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24665861011400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||