Normalized defining polynomial
\( x^{16} - 4 x^{15} - 55 x^{14} + 210 x^{13} + 1089 x^{12} - 3878 x^{11} - 9962 x^{10} + 32075 x^{9} + 44659 x^{8} - 124859 x^{7} - 93555 x^{6} + 214708 x^{5} + 73203 x^{4} - 133892 x^{3} - 11509 x^{2} + 9255 x + 1223 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13573982477229290545823357041=13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12720} a^{12} - \frac{1}{4240} a^{11} - \frac{187}{1272} a^{10} + \frac{547}{3180} a^{9} - \frac{73}{1060} a^{8} - \frac{4339}{12720} a^{7} - \frac{1181}{4240} a^{6} - \frac{1367}{3180} a^{5} + \frac{1737}{4240} a^{4} - \frac{329}{2544} a^{3} - \frac{497}{12720} a^{2} - \frac{2681}{12720} a + \frac{1379}{12720}$, $\frac{1}{12720} a^{13} - \frac{1879}{12720} a^{11} + \frac{1469}{6360} a^{10} - \frac{14}{265} a^{9} - \frac{607}{12720} a^{8} - \frac{16}{53} a^{7} + \frac{2983}{12720} a^{6} - \frac{1611}{4240} a^{5} + \frac{317}{3180} a^{4} - \frac{679}{1590} a^{3} + \frac{547}{3180} a^{2} + \frac{757}{1590} a - \frac{741}{4240}$, $\frac{1}{12720} a^{14} - \frac{2699}{12720} a^{11} + \frac{1339}{6360} a^{10} + \frac{139}{848} a^{9} - \frac{217}{1060} a^{8} + \frac{587}{2120} a^{7} - \frac{107}{424} a^{6} + \frac{97}{265} a^{5} + \frac{4357}{12720} a^{4} - \frac{1389}{4240} a^{3} + \frac{251}{4240} a^{2} + \frac{1829}{6360} a + \frac{2621}{12720}$, $\frac{1}{363690537475353386160} a^{15} - \frac{2286701725001031}{60615089579225564360} a^{14} - \frac{3930767249569699}{181845268737676693080} a^{13} - \frac{11664203627730059}{363690537475353386160} a^{12} + \frac{4402876634961157127}{181845268737676693080} a^{11} + \frac{26751949058893218253}{363690537475353386160} a^{10} - \frac{1859200059791691493}{60615089579225564360} a^{9} + \frac{13105321872047778803}{90922634368838346540} a^{8} - \frac{3660901249844159277}{60615089579225564360} a^{7} + \frac{13900998833281943861}{181845268737676693080} a^{6} - \frac{31354037892778338673}{72738107495070677232} a^{5} - \frac{60046644313935378313}{363690537475353386160} a^{4} + \frac{169175552793693006631}{363690537475353386160} a^{3} - \frac{10182731527951545844}{22730658592209586635} a^{2} + \frac{20120255269863389645}{72738107495070677232} a - \frac{2982322163081862804}{7576886197403195545}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 639742572.352 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |