Normalized defining polynomial
\( x^{16} - 2 x^{15} - 190 x^{14} + 450 x^{13} + 12853 x^{12} - 32724 x^{11} - 380372 x^{10} + 877563 x^{9} + 5254594 x^{8} - 7678424 x^{7} - 36909197 x^{6} + 10490174 x^{5} + 101413382 x^{4} + 62563841 x^{3} - 14494532 x^{2} - 14116519 x - 2033869 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133225631225242544609121034154723281=37^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{74} a^{12} + \frac{8}{37} a^{11} - \frac{5}{37} a^{10} - \frac{31}{74} a^{9} - \frac{2}{37} a^{8} - \frac{7}{37} a^{7} - \frac{11}{74} a^{6} + \frac{2}{37} a^{5} + \frac{16}{37} a^{4} + \frac{5}{74} a^{3} + \frac{16}{37} a^{2} + \frac{12}{37} a - \frac{11}{74}$, $\frac{1}{6142} a^{13} - \frac{35}{6142} a^{12} - \frac{80}{3071} a^{11} - \frac{853}{6142} a^{10} - \frac{1531}{6142} a^{9} + \frac{1242}{3071} a^{8} + \frac{1}{166} a^{7} + \frac{1823}{6142} a^{6} - \frac{900}{3071} a^{5} + \frac{2813}{6142} a^{4} - \frac{815}{6142} a^{3} + \frac{713}{3071} a^{2} - \frac{1901}{6142} a - \frac{327}{6142}$, $\frac{1}{21294314} a^{14} - \frac{326}{10647157} a^{13} - \frac{83311}{21294314} a^{12} - \frac{8960753}{21294314} a^{11} - \frac{1873371}{10647157} a^{10} - \frac{1640663}{21294314} a^{9} + \frac{796555}{21294314} a^{8} - \frac{622379}{10647157} a^{7} - \frac{3849987}{21294314} a^{6} + \frac{6541613}{21294314} a^{5} + \frac{3963295}{10647157} a^{4} - \frac{5958763}{21294314} a^{3} + \frac{6502601}{21294314} a^{2} + \frac{2022610}{10647157} a - \frac{1354657}{21294314}$, $\frac{1}{47502582838273303714485328854894745214362} a^{15} - \frac{493266419234192870791623554704434}{23751291419136651857242664427447372607181} a^{14} - \frac{1930319141239492737537456863224027660}{23751291419136651857242664427447372607181} a^{13} + \frac{317779756376915853148387343891815384827}{47502582838273303714485328854894745214362} a^{12} + \frac{9883539628027940356809952868734533735501}{23751291419136651857242664427447372607181} a^{11} + \frac{7390165179996593096577802254565357137722}{23751291419136651857242664427447372607181} a^{10} - \frac{9631559646364204318813386026632200216733}{47502582838273303714485328854894745214362} a^{9} + \frac{9271729661828238407592230938893960012717}{23751291419136651857242664427447372607181} a^{8} - \frac{7986505999282217879739263789272502347959}{23751291419136651857242664427447372607181} a^{7} + \frac{6095232379640480794556760157554355984955}{47502582838273303714485328854894745214362} a^{6} - \frac{10078149635814468798706313183639718726586}{23751291419136651857242664427447372607181} a^{5} + \frac{7484067199161588292309028313056165863388}{23751291419136651857242664427447372607181} a^{4} + \frac{6202320382004119451749165627417446016219}{47502582838273303714485328854894745214362} a^{3} - \frac{6669648947411123531893078774295234095862}{23751291419136651857242664427447372607181} a^{2} + \frac{6937891475963927942139915389946924731936}{23751291419136651857242664427447372607181} a + \frac{9409041084078340806846502585245142323423}{23751291419136651857242664427447372607181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2274016052920 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{37}, \sqrt{41})\), 4.4.68921.1, 4.4.94352849.1, 8.8.8902460114416801.1, 8.8.266618600943089.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |