Properties

Label 16.16.1266563733...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{16}\cdot 5^{12}\cdot 29^{4}\cdot 1621^{5}$
Root discriminant $156.28$
Ramified primes $2, 5, 29, 1621$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1430

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2662128788125, 0, -922958901250, 0, 116846137750, 0, -7417493375, 0, 263794450, 0, -5451425, 0, 64435, 0, -400, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 400*x^14 + 64435*x^12 - 5451425*x^10 + 263794450*x^8 - 7417493375*x^6 + 116846137750*x^4 - 922958901250*x^2 + 2662128788125)
 
gp: K = bnfinit(x^16 - 400*x^14 + 64435*x^12 - 5451425*x^10 + 263794450*x^8 - 7417493375*x^6 + 116846137750*x^4 - 922958901250*x^2 + 2662128788125, 1)
 

Normalized defining polynomial

\( x^{16} - 400 x^{14} + 64435 x^{12} - 5451425 x^{10} + 263794450 x^{8} - 7417493375 x^{6} + 116846137750 x^{4} - 922958901250 x^{2} + 2662128788125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(126656373383578014838096000000000000=2^{16}\cdot 5^{12}\cdot 29^{4}\cdot 1621^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $156.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 1621$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{125} a^{10} + \frac{1}{25} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{11} + \frac{1}{25} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{202625} a^{12} - \frac{16}{8105} a^{10} - \frac{81}{40525} a^{8} + \frac{778}{8105} a^{6} + \frac{689}{8105} a^{4}$, $\frac{1}{202625} a^{13} - \frac{16}{8105} a^{11} - \frac{81}{40525} a^{9} + \frac{778}{8105} a^{7} + \frac{689}{8105} a^{5}$, $\frac{1}{16749066642094455627377786875} a^{14} + \frac{7716078864550529986156}{3349813328418891125475557375} a^{12} - \frac{11560535703897737794728958}{3349813328418891125475557375} a^{10} + \frac{536319348161160053196416}{133992533136755645019022295} a^{8} - \frac{65104708101580869600210508}{669962665683778225095111475} a^{6} - \frac{803864640511560681099}{16532083052036476868479} a^{4} - \frac{6541333024792990680984}{82660415260182384342395} a^{2} + \frac{1148527972639579677}{10198694048140948099}$, $\frac{1}{16749066642094455627377786875} a^{15} + \frac{7716078864550529986156}{3349813328418891125475557375} a^{13} - \frac{11560535703897737794728958}{3349813328418891125475557375} a^{11} + \frac{536319348161160053196416}{133992533136755645019022295} a^{9} - \frac{65104708101580869600210508}{669962665683778225095111475} a^{7} - \frac{803864640511560681099}{16532083052036476868479} a^{5} - \frac{6541333024792990680984}{82660415260182384342395} a^{3} + \frac{1148527972639579677}{10198694048140948099} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2259683092720 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1430:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 71 conjugacy class representatives for t16n1430 are not computed
Character table for t16n1430 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.852038125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ $16$ $16$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
1621Data not computed