Normalized defining polynomial
\( x^{16} - 6 x^{15} - 1220 x^{14} + 3400 x^{13} + 567046 x^{12} + 450094 x^{11} - 126688589 x^{10} - 529773288 x^{9} + 13086980592 x^{8} + 97377694420 x^{7} - 423891709799 x^{6} - 5748766657820 x^{5} - 7225988019316 x^{4} + 92029351276520 x^{3} + 377047001834358 x^{2} + 431756362246264 x + 8585514871439 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12436160298838170417198712919084997051554477041=37^{14}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $760.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{88} a^{13} + \frac{1}{22} a^{12} + \frac{3}{88} a^{11} - \frac{1}{11} a^{9} - \frac{7}{88} a^{8} - \frac{13}{88} a^{7} - \frac{7}{88} a^{6} - \frac{1}{88} a^{5} + \frac{5}{22} a^{4} + \frac{5}{44} a^{3} + \frac{1}{88} a^{2} + \frac{1}{22} a + \frac{3}{8}$, $\frac{1}{1311112} a^{14} - \frac{23}{163889} a^{13} + \frac{20193}{327778} a^{12} + \frac{5831}{163889} a^{11} - \frac{15897}{327778} a^{10} - \frac{17863}{1311112} a^{9} + \frac{253445}{1311112} a^{8} + \frac{47087}{327778} a^{7} - \frac{156593}{655556} a^{6} + \frac{67655}{655556} a^{5} - \frac{72099}{655556} a^{4} + \frac{222059}{1311112} a^{3} + \frac{78659}{327778} a^{2} - \frac{159447}{655556} a - \frac{5175}{59596}$, $\frac{1}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{15} - \frac{400968107626757617048798972568089299041121055901716400971752694685548108235652603}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{14} - \frac{4655654182717502742301724878019086941931164530616545108256933289957873906381960828555}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{13} + \frac{69332259838180575259830528819813566942479110292562137757567081300112981611076538443299}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{12} - \frac{1524346525877718363234090071265704646309776117097773267090859328333983961069024124175}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{11} - \frac{108950938796806100184619385328221308245283663654412135297116962685152411697126791941013}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{10} - \frac{33114557812234618696127505179238688620808818444708019708540902854235688722512606281949}{169689727269070197863561896402844361749613281421933725560942140793382653155256591505731} a^{9} + \frac{333045586926645131674146862886396668435589367055572840057012420135830167701094927824433}{1357517818152561582908495171222754893996906251375469804487537126347061225242052732045848} a^{8} + \frac{16669580473176791148947306860330116688392383729447284010527455849457795744110134072943}{339379454538140395727123792805688723499226562843867451121884281586765306310513183011462} a^{7} - \frac{30266075616918096676360564787124587982209001716953161702889584239332745995855048736063}{1357517818152561582908495171222754893996906251375469804487537126347061225242052732045848} a^{6} - \frac{994356171711653901045866633193664171032740847464318682412751795706094049785190567402737}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{5} - \frac{44565722646023814740548047544458959023191117129224158066674075575174592608773130183349}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{4} - \frac{1089880966729164069525651083180856664683687645001865718521483626764640592222430780656903}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{3} + \frac{1091820180074700471006973147675289370243928512096855264158207438978465117603289723749045}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a^{2} - \frac{1145183007362826669231746906209880620974994219036610892312127262438526624324566857433763}{2715035636305123165816990342445509787993812502750939608975074252694122450484105464091696} a - \frac{77370307728095068871833761642502944260022809878549073395338694577481521352967142340953}{246821421482283924165180940222319071635801136613721782634097659335829313680373224008336}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320799854911000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{1961}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{37}) \), 4.4.7541066681.2, 4.4.7541066681.1, \(\Q(\sqrt{37}, \sqrt{53})\), 8.8.56867686687288355761.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |