Normalized defining polynomial
\( x^{16} - 784 x^{14} + 233444 x^{12} - 35068304 x^{10} + 2901858458 x^{8} - 133415695888 x^{6} + 3219023669900 x^{4} - 35156129966736 x^{2} + 131686311606833 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124072986059627688411885857786694729728=2^{66}\cdot 113^{3}\cdot 1039^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1039$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4156} a^{10} + \frac{255}{4156} a^{8} + \frac{177}{1039} a^{6} + \frac{6}{1039} a^{4} - \frac{1007}{4156} a^{2} + \frac{1}{4}$, $\frac{1}{4156} a^{11} + \frac{255}{4156} a^{9} + \frac{177}{1039} a^{7} + \frac{6}{1039} a^{5} - \frac{1007}{4156} a^{3} + \frac{1}{4} a$, $\frac{1}{4318084} a^{12} + \frac{255}{4318084} a^{10} - \frac{145283}{1079521} a^{8} + \frac{52995}{1079521} a^{6} - \frac{948575}{4318084} a^{4} - \frac{867}{4156} a^{2}$, $\frac{1}{4318084} a^{13} + \frac{255}{4318084} a^{11} + \frac{498389}{4318084} a^{9} - \frac{1}{4} a^{8} - \frac{973531}{2159042} a^{7} - \frac{1}{2} a^{6} + \frac{1210467}{4318084} a^{5} - \frac{1}{2} a^{4} + \frac{1211}{4156} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{615789707227455893476039030052262628} a^{14} - \frac{60197215049786034952240310209}{615789707227455893476039030052262628} a^{12} - \frac{23431212663711120701824618206097}{615789707227455893476039030052262628} a^{10} + \frac{138449003468459132823091176767931989}{615789707227455893476039030052262628} a^{8} + \frac{210673497676556571715890455355617561}{615789707227455893476039030052262628} a^{6} + \frac{184862309223521875043674122652957}{592675367880130792565966342687452} a^{4} + \frac{64220935988209095435638258859}{570428650510231754153961831268} a^{2} + \frac{22435297427867574974356539}{549016987979048849041349212}$, $\frac{1}{615789707227455893476039030052262628} a^{15} - \frac{60197215049786034952240310209}{615789707227455893476039030052262628} a^{13} - \frac{23431212663711120701824618206097}{615789707227455893476039030052262628} a^{11} - \frac{3874605834601210136479645186283417}{153947426806863973369009757513065657} a^{9} - \frac{1}{4} a^{8} - \frac{97221355937171375022129059670513753}{615789707227455893476039030052262628} a^{7} - \frac{1}{2} a^{6} - \frac{111475374716543521239309048690769}{592675367880130792565966342687452} a^{5} - \frac{1}{2} a^{4} - \frac{220993389266906781641342656775}{570428650510231754153961831268} a^{3} - \frac{1}{2} a^{2} + \frac{79844772211314893617346921}{274508493989524424520674606} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121969797868000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n859 |
| Character table for t16n859 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7583301632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $113$ | 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1039 | Data not computed | ||||||