Properties

Label 16.16.1240729860...9728.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{66}\cdot 113^{3}\cdot 1039^{4}$
Root discriminant $240.36$
Ramified primes $2, 113, 1039$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T859

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17362718655679, 4093471289648, -16905504082608, 1097830640448, 2855439882632, -67051400272, -167097841240, 1188103936, 4455644214, -9972320, -57863576, 87600, 356704, -208, -992, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 992*x^14 - 208*x^13 + 356704*x^12 + 87600*x^11 - 57863576*x^10 - 9972320*x^9 + 4455644214*x^8 + 1188103936*x^7 - 167097841240*x^6 - 67051400272*x^5 + 2855439882632*x^4 + 1097830640448*x^3 - 16905504082608*x^2 + 4093471289648*x + 17362718655679)
 
gp: K = bnfinit(x^16 - 992*x^14 - 208*x^13 + 356704*x^12 + 87600*x^11 - 57863576*x^10 - 9972320*x^9 + 4455644214*x^8 + 1188103936*x^7 - 167097841240*x^6 - 67051400272*x^5 + 2855439882632*x^4 + 1097830640448*x^3 - 16905504082608*x^2 + 4093471289648*x + 17362718655679, 1)
 

Normalized defining polynomial

\( x^{16} - 992 x^{14} - 208 x^{13} + 356704 x^{12} + 87600 x^{11} - 57863576 x^{10} - 9972320 x^{9} + 4455644214 x^{8} + 1188103936 x^{7} - 167097841240 x^{6} - 67051400272 x^{5} + 2855439882632 x^{4} + 1097830640448 x^{3} - 16905504082608 x^{2} + 4093471289648 x + 17362718655679 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(124072986059627688411885857786694729728=2^{66}\cdot 113^{3}\cdot 1039^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $240.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 113, 1039$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{6}{31} a^{13} - \frac{1}{31} a^{12} - \frac{2}{31} a^{11} + \frac{12}{31} a^{10} - \frac{15}{31} a^{9} - \frac{6}{31} a^{8} - \frac{10}{31} a^{6} + \frac{15}{31} a^{5} - \frac{12}{31} a^{4} - \frac{3}{31} a^{3} - \frac{12}{31} a^{2} - \frac{12}{31} a - \frac{14}{31}$, $\frac{1}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{15} - \frac{374210535068871162029890402715432789153355147221479018669376309020988637297774445172690900897420}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{14} - \frac{80716018774430432737666184983789358629855082027037699327530682761536312220374898257215177901341613}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{13} - \frac{2106436036924400055806045169827995152045752672264958932316088303496301855503356736231321454768516}{12049381561867272111331649877863265725791602878288991610653846893417747757189661551023969589427183} a^{12} - \frac{68419644114358436056738613965494938103291197184431504434379555619754678299913182297370712513035100}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{11} + \frac{131029464140285254544072467965766494910881007023063139998561324668355359590733284247507594346324530}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{10} - \frac{161600874135039115294979534562691573231042601880672062733034047651211006722021245706322573072161759}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{9} + \frac{30269161029373503516908522387229747584435161475183678050257108718835133527705238118874685893429788}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{8} + \frac{86936096333887972825489543921427850761023882532167902463921242803310419456968482898922520329391189}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{7} + \frac{80805534393573824427158200654485348205798192674375922224205533617611032842241952671003277837691517}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{6} - \frac{162773528865981408749055994925455020583240748877315256125044692331395013948968665558018479638443936}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{5} - \frac{68754922874204503720894363475640890553452521021363870808100739749499151465267734521891619557472070}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{4} + \frac{41443759524731254319817171636980523009317885562090984055675262905900038436495344075420092570404401}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{3} + \frac{92323333618905123462702166984891362250518170590047472529078896670445653465798153547613014493692536}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a^{2} - \frac{120144147176679338365419365931663923192994572050672554457031343295408362052778387334985558018867056}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673} a + \frac{151947632320471528575583213799408739126809629872529398954498505404535004669386450667678077090598130}{373530828417885435451281146213761237499539689226958739930269253695950180472879508081743057272242673}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 124173895398000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T859:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n859
Character table for t16n859 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7583301632.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ $16$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$113$113.2.0.1$x^{2} - x + 10$$1$$2$$0$$C_2$$[\ ]^{2}$
113.2.1.2$x^{2} + 339$$2$$1$$1$$C_2$$[\ ]_{2}$
113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
113.4.2.1$x^{4} + 2147 x^{2} + 1276900$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
113.4.0.1$x^{4} - x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
1039Data not computed