Normalized defining polynomial
\( x^{16} - 4 x^{15} - 64 x^{14} + 216 x^{13} + 1544 x^{12} - 3804 x^{11} - 19156 x^{10} + 26292 x^{9} + 128879 x^{8} - 50748 x^{7} - 431036 x^{6} - 108060 x^{5} + 647172 x^{4} + 456648 x^{3} - 284700 x^{2} - 382980 x - 104959 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12136551081312256000000000000=2^{44}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{11} - \frac{1}{15} a^{9} - \frac{1}{15} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{4}{15} a^{5} + \frac{1}{5} a^{4} + \frac{4}{15} a^{3} - \frac{1}{3} a^{2} - \frac{2}{5} a - \frac{7}{15}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{15} a^{8} + \frac{4}{15} a^{7} + \frac{2}{15} a^{6} - \frac{1}{15} a^{5} - \frac{2}{15} a^{4} - \frac{2}{5} a^{3} - \frac{1}{15} a^{2} - \frac{1}{15} a + \frac{4}{15}$, $\frac{1}{75} a^{14} + \frac{2}{75} a^{12} - \frac{1}{75} a^{11} - \frac{1}{25} a^{10} - \frac{7}{75} a^{9} - \frac{2}{75} a^{8} - \frac{13}{75} a^{7} + \frac{7}{15} a^{6} - \frac{11}{75} a^{5} - \frac{1}{5} a^{4} - \frac{16}{75} a^{3} + \frac{8}{75} a^{2} + \frac{34}{75} a + \frac{3}{25}$, $\frac{1}{4551372187009128291540675} a^{15} - \frac{1447462471440435596386}{1517124062336376097180225} a^{14} - \frac{59803816470005196383678}{4551372187009128291540675} a^{13} - \frac{2687744733589478310139}{137920369303306917925475} a^{12} + \frac{1198805159539974553385}{182054887480365131661627} a^{11} - \frac{305073843156436642846}{1517124062336376097180225} a^{10} - \frac{141277365878182683308897}{1517124062336376097180225} a^{9} + \frac{118587506587939040554193}{4551372187009128291540675} a^{8} + \frac{880251028430405471536739}{4551372187009128291540675} a^{7} - \frac{1749094209926464416900206}{4551372187009128291540675} a^{6} + \frac{678272796020781759254063}{4551372187009128291540675} a^{5} - \frac{1409616442676734025261471}{4551372187009128291540675} a^{4} - \frac{420927521218809232790068}{1517124062336376097180225} a^{3} - \frac{118057890056952482181199}{303424812467275219436045} a^{2} + \frac{1951833468842350887746242}{4551372187009128291540675} a + \frac{2270961887775656299068628}{4551372187009128291540675}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 803814836.688 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||