Normalized defining polynomial
\( x^{16} - 8 x^{15} - 308 x^{14} + 2296 x^{13} + 38866 x^{12} - 263408 x^{11} - 2607840 x^{10} + 15509448 x^{9} + 101165629 x^{8} - 500712216 x^{7} - 2314815140 x^{6} + 8765075664 x^{5} + 30570952056 x^{4} - 76367046112 x^{3} - 215062276912 x^{2} + 254794977984 x + 624192924176 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1186139225426340374118400000000000000=2^{32}\cdot 5^{14}\cdot 199^{2}\cdot 421^{2}\cdot 2539^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 199, 421, 2539$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{104} a^{8} - \frac{1}{26} a^{7} - \frac{3}{52} a^{6} - \frac{5}{26} a^{5} + \frac{17}{104} a^{4} - \frac{5}{13} a^{3} - \frac{11}{26} a^{2} - \frac{1}{13} a + \frac{1}{26}$, $\frac{1}{104} a^{9} + \frac{1}{26} a^{7} + \frac{1}{13} a^{6} - \frac{11}{104} a^{5} - \frac{3}{13} a^{4} - \frac{11}{52} a^{3} + \frac{3}{13} a^{2} + \frac{3}{13} a + \frac{2}{13}$, $\frac{1}{104} a^{10} - \frac{1}{52} a^{7} - \frac{1}{8} a^{6} - \frac{11}{52} a^{5} - \frac{3}{26} a^{4} + \frac{7}{26} a^{3} - \frac{1}{13} a^{2} + \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{104} a^{11} + \frac{5}{104} a^{7} - \frac{1}{13} a^{6} - \frac{1}{4} a^{5} - \frac{2}{13} a^{4} + \frac{2}{13} a^{3} - \frac{5}{13} a^{2} - \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{208} a^{12} - \frac{1}{208} a^{10} - \frac{1}{208} a^{8} - \frac{1}{26} a^{7} - \frac{3}{208} a^{6} - \frac{1}{52} a^{5} - \frac{3}{13} a^{4} - \frac{9}{52} a^{3} + \frac{21}{52} a^{2} + \frac{1}{26} a + \frac{6}{13}$, $\frac{1}{208} a^{13} - \frac{1}{208} a^{11} - \frac{1}{208} a^{9} + \frac{17}{208} a^{7} - \frac{1}{4} a^{5} + \frac{3}{13} a^{4} + \frac{19}{52} a^{3} - \frac{2}{13} a^{2} + \frac{2}{13} a + \frac{2}{13}$, $\frac{1}{183299957170969278423745760864} a^{14} - \frac{7}{183299957170969278423745760864} a^{13} - \frac{335256455625337153667643965}{183299957170969278423745760864} a^{12} + \frac{249039145569626014085231565}{183299957170969278423745760864} a^{11} + \frac{139221135527240661345258299}{183299957170969278423745760864} a^{10} + \frac{19406517921278402206172685}{14099996705459175263365058528} a^{9} - \frac{98644250768828525955308891}{183299957170969278423745760864} a^{8} + \frac{22770294264670247781724901427}{183299957170969278423745760864} a^{7} - \frac{1332001035091414376971539807}{11456247323185579901484110054} a^{6} + \frac{2119464984960709715770007157}{91649978585484639211872880432} a^{5} + \frac{10834487148944610978109946693}{45824989292742319605936440216} a^{4} - \frac{21718196631689722609433243035}{45824989292742319605936440216} a^{3} + \frac{4397295242769935920891589747}{11456247323185579901484110054} a^{2} + \frac{363213899934124910592740205}{1762499588182396907920632316} a + \frac{1214849841667426637518548024}{5728123661592789950742055027}$, $\frac{1}{183299957170969278423745760864} a^{15} - \frac{12894479062512967448755539}{7049998352729587631682529264} a^{13} - \frac{167628227812668576833821937}{91649978585484639211872880432} a^{12} + \frac{59997783166112926010623469}{91649978585484639211872880432} a^{11} - \frac{267833453257546524911789659}{91649978585484639211872880432} a^{10} - \frac{11893838514361354139278359}{22912494646371159802968220108} a^{9} - \frac{416355068541355851465240459}{91649978585484639211872880432} a^{8} + \frac{9417573353914130162323514009}{183299957170969278423745760864} a^{7} + \frac{11246137458505357731593812975}{91649978585484639211872880432} a^{6} - \frac{20776007423313709540810606785}{91649978585484639211872880432} a^{5} - \frac{2460261396593871089002399385}{22912494646371159802968220108} a^{4} - \frac{16350723042527721751783977085}{45824989292742319605936440216} a^{3} + \frac{9883927276086025676727645011}{22912494646371159802968220108} a^{2} + \frac{5305621879300730617481852905}{22912494646371159802968220108} a - \frac{1630423740376795757913799649}{5728123661592789950742055027}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8028159118800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1162 |
| Character table for t16n1162 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.5120000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.35 | $x^{8} + 6 x^{6} + 4 x^{5} + 10 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.16.35 | $x^{8} + 6 x^{6} + 4 x^{5} + 10 x^{4} + 4 x^{2} + 12$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 199 | Data not computed | ||||||
| 421 | Data not computed | ||||||
| 2539 | Data not computed | ||||||