Normalized defining polynomial
\( x^{16} - x^{15} - 212 x^{14} + 188 x^{13} + 14729 x^{12} - 23010 x^{11} - 425769 x^{10} + 1107152 x^{9} + 4184332 x^{8} - 18037073 x^{7} + 11515707 x^{6} + 33312812 x^{5} - 58857565 x^{4} + 30604631 x^{3} - 1439221 x^{2} - 1963061 x - 8161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11445391768549949624817238631584321=13^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{2958} a^{14} - \frac{71}{1479} a^{13} + \frac{36}{493} a^{12} + \frac{647}{2958} a^{11} + \frac{3}{493} a^{10} - \frac{38}{493} a^{9} - \frac{695}{1479} a^{8} - \frac{977}{2958} a^{7} - \frac{167}{2958} a^{6} + \frac{445}{986} a^{5} - \frac{175}{986} a^{4} - \frac{499}{1479} a^{3} + \frac{117}{986} a^{2} - \frac{90}{493} a + \frac{413}{2958}$, $\frac{1}{16139583018838645628088999422012509400116011105486} a^{15} - \frac{2031070090788366997953025413627422417003629733}{16139583018838645628088999422012509400116011105486} a^{14} + \frac{37547411591020816676547129807186669658455819020}{2689930503139774271348166570335418233352668517581} a^{13} - \frac{74925902115947435073256919755087165590986887621}{2689930503139774271348166570335418233352668517581} a^{12} + \frac{331333074459142009445815309705524854670998290880}{2689930503139774271348166570335418233352668517581} a^{11} - \frac{89576211901690354726170285508322399995487923099}{375339139972991758792767428418895567444558397802} a^{10} - \frac{537493371118043673378621644218854234555760134935}{16139583018838645628088999422012509400116011105486} a^{9} + \frac{5688445319031766013848048629983289665082937360495}{16139583018838645628088999422012509400116011105486} a^{8} + \frac{1946413705794749735044885207700352366836815883513}{5379861006279548542696333140670836466705337035162} a^{7} + \frac{370937691287495259172302923727245745861472681475}{2689930503139774271348166570335418233352668517581} a^{6} - \frac{3336914757394654838390844328652767541912265240697}{16139583018838645628088999422012509400116011105486} a^{5} - \frac{3594558587910229713405313828812148864162418928305}{8069791509419322814044499711006254700058005552743} a^{4} - \frac{7739232903443709896311257319058770470722424180479}{16139583018838645628088999422012509400116011105486} a^{3} - \frac{89396602149606945320288705745383690242857119003}{5379861006279548542696333140670836466705337035162} a^{2} - \frac{3355471587143347502860862640889536844924809201253}{8069791509419322814044499711006254700058005552743} a - \frac{5320832694542607506318388330424445479319268378371}{16139583018838645628088999422012509400116011105486}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 378472370764 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |