Normalized defining polynomial
\( x^{16} - 560 x^{14} + 126364 x^{12} - 15027760 x^{10} + 1023306828 x^{8} - 40118683872 x^{6} + 846231957776 x^{4} - 7669495426592 x^{2} + 7289004894728 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11230100681627560957071852383825297408=2^{67}\cdot 17^{4}\cdot 977^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $206.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 977$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{1954} a^{10} + \frac{417}{1954} a^{8} + \frac{331}{1954} a^{6} + \frac{227}{977} a^{4} + \frac{468}{977} a^{2}$, $\frac{1}{3908} a^{11} - \frac{140}{977} a^{9} - \frac{323}{1954} a^{7} - \frac{375}{977} a^{5} + \frac{234}{977} a^{3}$, $\frac{1}{3818116} a^{12} - \frac{140}{954529} a^{10} + \frac{31591}{954529} a^{8} + \frac{61176}{954529} a^{6} + \frac{12935}{954529} a^{4} - \frac{445}{977} a^{2}$, $\frac{1}{3818116} a^{13} + \frac{417}{3818116} a^{11} - \frac{105189}{954529} a^{9} - \frac{193219}{1909058} a^{7} - \frac{353440}{954529} a^{5} - \frac{211}{977} a^{3}$, $\frac{1}{14184146402296145857266300560452} a^{14} + \frac{695853517097288246870921}{14184146402296145857266300560452} a^{12} - \frac{135381389871627155358739164}{3546036600574036464316575140113} a^{10} + \frac{354669170248201093015110442576}{3546036600574036464316575140113} a^{8} + \frac{616231173333510567607867181148}{3546036600574036464316575140113} a^{6} - \frac{1370011136455019906005877633}{3629515456063496892852175169} a^{4} - \frac{1004813310163921691763700}{3714959525141757311005297} a^{2} + \frac{1467511276814820812930}{3802415071792996224161}$, $\frac{1}{14184146402296145857266300560452} a^{15} + \frac{695853517097288246870921}{14184146402296145857266300560452} a^{13} - \frac{135381389871627155358739164}{3546036600574036464316575140113} a^{11} + \frac{354669170248201093015110442576}{3546036600574036464316575140113} a^{9} + \frac{616231173333510567607867181148}{3546036600574036464316575140113} a^{7} - \frac{1370011136455019906005877633}{3629515456063496892852175169} a^{5} - \frac{1004813310163921691763700}{3714959525141757311005297} a^{3} + \frac{1467511276814820812930}{3802415071792996224161} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42076984096600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 68 conjugacy class representatives for t16n1433 are not computed |
| Character table for t16n1433 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 977 | Data not computed | ||||||