Properties

Label 16.16.1100984940...3125.1
Degree $16$
Signature $[16, 0]$
Discriminant $5^{12}\cdot 1652141^{3}$
Root discriminant $48.99$
Ramified primes $5, 1652141$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1651

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-24155, 70000, 21185, -210015, 91541, 184878, -110738, -76303, 46648, 17736, -9304, -2333, 946, 156, -48, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 48*x^14 + 156*x^13 + 946*x^12 - 2333*x^11 - 9304*x^10 + 17736*x^9 + 46648*x^8 - 76303*x^7 - 110738*x^6 + 184878*x^5 + 91541*x^4 - 210015*x^3 + 21185*x^2 + 70000*x - 24155)
 
gp: K = bnfinit(x^16 - 4*x^15 - 48*x^14 + 156*x^13 + 946*x^12 - 2333*x^11 - 9304*x^10 + 17736*x^9 + 46648*x^8 - 76303*x^7 - 110738*x^6 + 184878*x^5 + 91541*x^4 - 210015*x^3 + 21185*x^2 + 70000*x - 24155, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 48 x^{14} + 156 x^{13} + 946 x^{12} - 2333 x^{11} - 9304 x^{10} + 17736 x^{9} + 46648 x^{8} - 76303 x^{7} - 110738 x^{6} + 184878 x^{5} + 91541 x^{4} - 210015 x^{3} + 21185 x^{2} + 70000 x - 24155 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1100984940802011528564453125=5^{12}\cdot 1652141^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 1652141$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{24129853119197004456007631} a^{15} - \frac{2406248828086410285914994}{24129853119197004456007631} a^{14} + \frac{7960304509388672659563979}{24129853119197004456007631} a^{13} - \frac{30666836684132361360614}{24129853119197004456007631} a^{12} + \frac{112838297926952093216235}{24129853119197004456007631} a^{11} - \frac{3402384481601497782873612}{24129853119197004456007631} a^{10} - \frac{2525406052666164311824321}{24129853119197004456007631} a^{9} + \frac{8949687244139962539066791}{24129853119197004456007631} a^{8} - \frac{4746943859021405687036230}{24129853119197004456007631} a^{7} - \frac{3149349666591986115396448}{24129853119197004456007631} a^{6} + \frac{4110988030250164260567874}{24129853119197004456007631} a^{5} + \frac{6687376913985895573964523}{24129853119197004456007631} a^{4} + \frac{11996821105310630180944135}{24129853119197004456007631} a^{3} - \frac{696056415398773366858914}{24129853119197004456007631} a^{2} + \frac{6941556014486666517955374}{24129853119197004456007631} a + \frac{10881537342998260788670004}{24129853119197004456007631}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 227934621.417 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1651:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 44 conjugacy class representatives for t16n1651
Character table for t16n1651 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.1032588125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
1652141Data not computed