Normalized defining polynomial
\( x^{16} - 8 x^{15} - 164 x^{14} + 1260 x^{13} + 10036 x^{12} - 73564 x^{11} - 287260 x^{10} + 1952144 x^{9} + 4122561 x^{8} - 23144124 x^{7} - 33317060 x^{6} + 105425840 x^{5} + 161682534 x^{4} - 127064324 x^{3} - 284134756 x^{2} - 92368028 x + 16653503 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(107586731453760569991937021444096=2^{44}\cdot 223^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5410971914729521707864423564661233322869403554259924121909} a^{15} - \frac{505077532329456627439015796147617009705268820405353067208}{5410971914729521707864423564661233322869403554259924121909} a^{14} - \frac{1573674822927437235133709318591953960663729626544080401306}{5410971914729521707864423564661233322869403554259924121909} a^{13} - \frac{254692250917555038201996389693375251128491199488128909962}{5410971914729521707864423564661233322869403554259924121909} a^{12} - \frac{1217600457837261069072533957274835365188952963997731626889}{5410971914729521707864423564661233322869403554259924121909} a^{11} + \frac{737478594380339056751866844130649815199214822756055902448}{5410971914729521707864423564661233322869403554259924121909} a^{10} - \frac{409567351556136229154613088800229105601039210422650829239}{5410971914729521707864423564661233322869403554259924121909} a^{9} - \frac{1851894707422615352034570979155681472715435131502491038241}{5410971914729521707864423564661233322869403554259924121909} a^{8} + \frac{864430363230094777819810525229121293529253647786584699007}{5410971914729521707864423564661233322869403554259924121909} a^{7} - \frac{2475806864785901592131882911109142400693917976873975883138}{5410971914729521707864423564661233322869403554259924121909} a^{6} + \frac{1444927335900900144362758304631780749896693706958650827959}{5410971914729521707864423564661233322869403554259924121909} a^{5} + \frac{713137826976429743881228531465268040357689185328644278516}{5410971914729521707864423564661233322869403554259924121909} a^{4} + \frac{506918346580344572591379026092349276495346217001607655952}{5410971914729521707864423564661233322869403554259924121909} a^{3} + \frac{2073696607036406739427171894559303108270942837521524067229}{5410971914729521707864423564661233322869403554259924121909} a^{2} + \frac{1431710697595262912695546331039187504427302732001129160264}{5410971914729521707864423564661233322869403554259924121909} a - \frac{2193054808611149378209665484647572019895016355505340482288}{5410971914729521707864423564661233322869403554259924121909}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66964254976.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14272.1, 8.8.3259039744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 223 | Data not computed | ||||||