Normalized defining polynomial
\( x^{16} - 4 x^{15} - 36 x^{14} + 156 x^{13} + 391 x^{12} - 2002 x^{11} - 1394 x^{10} + 11138 x^{9} - 733 x^{8} - 27098 x^{7} + 9856 x^{6} + 24792 x^{5} - 4989 x^{4} - 10046 x^{3} - 1886 x^{2} + 284 x + 71 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10684260544555930240000000000=2^{16}\cdot 5^{10}\cdot 19^{4}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{25} a^{12} + \frac{2}{25} a^{11} - \frac{1}{25} a^{10} - \frac{8}{25} a^{7} + \frac{9}{25} a^{6} + \frac{8}{25} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{6}{25} a^{2} - \frac{7}{25} a - \frac{4}{25}$, $\frac{1}{25} a^{13} + \frac{2}{25} a^{10} + \frac{2}{25} a^{8} + \frac{1}{5} a^{7} + \frac{4}{25} a^{5} + \frac{1}{5} a^{4} - \frac{1}{25} a^{3} + \frac{1}{5} a^{2} - \frac{7}{25}$, $\frac{1}{475} a^{14} - \frac{8}{475} a^{13} - \frac{8}{475} a^{12} + \frac{11}{475} a^{11} + \frac{37}{475} a^{10} - \frac{28}{475} a^{9} + \frac{14}{475} a^{8} - \frac{206}{475} a^{7} + \frac{92}{475} a^{6} + \frac{224}{475} a^{5} - \frac{186}{475} a^{4} - \frac{117}{475} a^{3} + \frac{23}{475} a^{2} - \frac{151}{475} a + \frac{108}{475}$, $\frac{1}{2886146301575} a^{15} + \frac{1480960307}{2886146301575} a^{14} - \frac{44534576507}{2886146301575} a^{13} - \frac{25020409926}{2886146301575} a^{12} + \frac{113195359368}{2886146301575} a^{11} + \frac{59209788441}{2886146301575} a^{10} + \frac{174619200619}{2886146301575} a^{9} + \frac{195777792431}{2886146301575} a^{8} + \frac{1435932288173}{2886146301575} a^{7} + \frac{588726231101}{2886146301575} a^{6} - \frac{1220874792888}{2886146301575} a^{5} + \frac{928330624408}{2886146301575} a^{4} + \frac{53220992233}{151902436925} a^{3} - \frac{30622015096}{151902436925} a^{2} - \frac{690626716993}{2886146301575} a + \frac{1111008226621}{2886146301575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 797746033.308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t16n1496 |
| Character table for t16n1496 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.33725.1, 8.8.5440247200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 71 | Data not computed | ||||||