Normalized defining polynomial
\( x^{16} - x^{15} - 197 x^{14} - 102 x^{13} + 10926 x^{12} + 5579 x^{11} - 264375 x^{10} - 11771 x^{9} + 3149729 x^{8} - 1649977 x^{7} - 17580825 x^{6} + 17914002 x^{5} + 36131021 x^{4} - 53976394 x^{3} - 3024783 x^{2} + 29665257 x - 10313939 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1062747667303462437668657811578369140625=5^{14}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $274.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} - \frac{6}{17} a^{12} - \frac{6}{17} a^{11} + \frac{5}{17} a^{10} + \frac{5}{17} a^{9} - \frac{1}{17} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{8}{17} a^{5} + \frac{4}{17} a^{4} + \frac{8}{17} a^{3} + \frac{3}{17} a^{2} + \frac{8}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{14} - \frac{8}{17} a^{12} + \frac{3}{17} a^{11} + \frac{1}{17} a^{10} - \frac{5}{17} a^{9} - \frac{7}{17} a^{8} - \frac{3}{17} a^{7} - \frac{8}{17} a^{6} + \frac{1}{17} a^{5} - \frac{2}{17} a^{4} - \frac{8}{17} a^{2} - \frac{5}{17} a + \frac{5}{17}$, $\frac{1}{628293625277911600761496885302156324706979663869} a^{15} - \frac{10226234306101834727210450016669007541111457667}{628293625277911600761496885302156324706979663869} a^{14} + \frac{4228134111895390325685571332278041840435530994}{628293625277911600761496885302156324706979663869} a^{13} - \frac{166853441009303414078344174806178995652607935897}{628293625277911600761496885302156324706979663869} a^{12} - \frac{291334423862109367075858314856601927223843953277}{628293625277911600761496885302156324706979663869} a^{11} + \frac{267751490914963101574610901729544752192421904836}{628293625277911600761496885302156324706979663869} a^{10} + \frac{4355685778168745571079277257407256000904228497}{628293625277911600761496885302156324706979663869} a^{9} + \frac{106509999408658956769682259534801724188735111803}{628293625277911600761496885302156324706979663869} a^{8} - \frac{38344783615754842234405497172177320875258979048}{628293625277911600761496885302156324706979663869} a^{7} - \frac{31988919383453222024467290407751367923149968925}{628293625277911600761496885302156324706979663869} a^{6} + \frac{82209305392402706833675548630492529955157970235}{628293625277911600761496885302156324706979663869} a^{5} + \frac{206366203387184128885799860260402454434101950240}{628293625277911600761496885302156324706979663869} a^{4} + \frac{208515905974459142208297605667650992258736970101}{628293625277911600761496885302156324706979663869} a^{3} + \frac{116814989006520778193204307112574701224670952424}{628293625277911600761496885302156324706979663869} a^{2} + \frac{265618393770588474276708261811177258110519865101}{628293625277911600761496885302156324706979663869} a - \frac{123015775515425388176409793025975627441901816319}{628293625277911600761496885302156324706979663869}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100217027695000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.17624225.2, 8.8.691114607742640625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.4 | $x^{8} + 40$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 89 | Data not computed | ||||||