Normalized defining polynomial
\( x^{16} - 6 x^{15} - 54 x^{14} + 316 x^{13} + 1129 x^{12} - 5904 x^{11} - 12476 x^{10} + 49215 x^{9} + 76870 x^{8} - 187170 x^{7} - 241469 x^{6} + 304908 x^{5} + 315322 x^{4} - 220035 x^{3} - 165824 x^{2} + 54341 x + 30259 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10483151353726139536553735554369=17^{14}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} + \frac{2}{13} a^{13} - \frac{3}{13} a^{12} - \frac{11}{26} a^{11} - \frac{2}{13} a^{10} + \frac{11}{26} a^{8} - \frac{5}{13} a^{7} + \frac{1}{13} a^{6} + \frac{9}{26} a^{5} + \frac{4}{13} a^{4} + \frac{1}{13} a^{3} - \frac{1}{2} a^{2} + \frac{3}{13} a + \frac{6}{13}$, $\frac{1}{593268383775801003071303881423018} a^{15} + \frac{2490202065410282607946086500935}{296634191887900501535651940711509} a^{14} - \frac{32375678680999134802243991323891}{593268383775801003071303881423018} a^{13} + \frac{13292512273160109192758174756277}{593268383775801003071303881423018} a^{12} + \frac{76937574525306480214883339204821}{296634191887900501535651940711509} a^{11} - \frac{222082352379546088218273871031549}{593268383775801003071303881423018} a^{10} - \frac{283749633662838353131107555072909}{593268383775801003071303881423018} a^{9} - \frac{115505478672522288051052892248731}{296634191887900501535651940711509} a^{8} + \frac{121208052069177740805463583539805}{593268383775801003071303881423018} a^{7} - \frac{37537474353320669841198175132049}{593268383775801003071303881423018} a^{6} + \frac{127716953854287561993408654788190}{296634191887900501535651940711509} a^{5} - \frac{234435972895186404132473544483931}{593268383775801003071303881423018} a^{4} - \frac{125936009152099776373915537716561}{593268383775801003071303881423018} a^{3} - \frac{5139860005163743577193979318735}{296634191887900501535651940711509} a^{2} - \frac{234840842846585477801917370603731}{593268383775801003071303881423018} a + \frac{76277088807240246067172562606169}{296634191887900501535651940711509}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7359535457.67 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.4.15317.1, 4.4.260389.1, 8.8.3237769502871713.1, 8.8.1152641332457.1, 8.8.67802431321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $53$ | 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |