Normalized defining polynomial
\( x^{16} - 4 x^{15} - 86 x^{14} + 344 x^{13} + 2466 x^{12} - 9898 x^{11} - 27184 x^{10} + 109926 x^{9} + 120123 x^{8} - 491508 x^{7} - 131564 x^{6} + 706524 x^{5} - 328065 x^{4} - 12992 x^{3} + 22473 x^{2} - 676 x - 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10483151353726139536553735554369=17^{14}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{13} a^{7} - \frac{2}{13} a^{6} + \frac{2}{13} a^{5} + \frac{5}{13} a^{4} + \frac{1}{13} a^{3} + \frac{6}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{442} a^{8} - \frac{1}{221} a^{7} + \frac{105}{221} a^{6} - \frac{95}{221} a^{5} + \frac{53}{442} a^{4} - \frac{75}{221} a^{3} + \frac{57}{442} a^{2} - \frac{9}{34} a - \frac{13}{34}$, $\frac{1}{442} a^{9} + \frac{1}{221} a^{7} + \frac{98}{221} a^{6} + \frac{149}{442} a^{5} - \frac{90}{221} a^{4} - \frac{5}{442} a^{3} + \frac{99}{442} a^{2} - \frac{97}{442} a + \frac{4}{17}$, $\frac{1}{442} a^{10} - \frac{2}{221} a^{7} + \frac{137}{442} a^{6} - \frac{8}{17} a^{5} + \frac{15}{34} a^{4} + \frac{15}{34} a^{3} - \frac{109}{442} a^{2} + \frac{101}{221} a - \frac{4}{17}$, $\frac{1}{442} a^{11} - \frac{7}{442} a^{7} + \frac{10}{221} a^{6} + \frac{47}{442} a^{5} + \frac{13}{34} a^{4} + \frac{3}{34} a^{3} + \frac{28}{221} a^{2} + \frac{37}{221} a + \frac{8}{17}$, $\frac{1}{442} a^{12} + \frac{3}{221} a^{7} + \frac{191}{442} a^{6} + \frac{165}{442} a^{5} - \frac{16}{221} a^{4} - \frac{55}{221} a^{3} + \frac{31}{442} a^{2} - \frac{13}{34} a + \frac{11}{34}$, $\frac{1}{5746} a^{13} - \frac{1}{5746} a^{12} + \frac{5}{5746} a^{11} + \frac{2}{2873} a^{10} - \frac{1}{2873} a^{9} - \frac{2}{2873} a^{8} - \frac{44}{2873} a^{7} - \frac{41}{169} a^{6} - \frac{497}{2873} a^{5} + \frac{63}{338} a^{4} + \frac{89}{2873} a^{3} - \frac{171}{2873} a^{2} - \frac{4}{221} a + \frac{9}{34}$, $\frac{1}{511394} a^{14} + \frac{43}{511394} a^{13} + \frac{3}{3026} a^{12} - \frac{148}{255697} a^{11} + \frac{499}{511394} a^{10} - \frac{23}{30082} a^{9} + \frac{503}{511394} a^{8} - \frac{9731}{255697} a^{7} + \frac{70257}{511394} a^{6} - \frac{54684}{255697} a^{5} - \frac{743}{2873} a^{4} + \frac{87660}{255697} a^{3} + \frac{409}{511394} a^{2} - \frac{2571}{39338} a - \frac{423}{3026}$, $\frac{1}{31859099053366} a^{15} + \frac{20560273}{31859099053366} a^{14} - \frac{2326697277}{31859099053366} a^{13} - \frac{12446963123}{15929549526683} a^{12} + \frac{9691500035}{31859099053366} a^{11} - \frac{12572040814}{15929549526683} a^{10} + \frac{481238811}{1225349963591} a^{9} + \frac{28898159371}{31859099053366} a^{8} + \frac{375137682121}{31859099053366} a^{7} - \frac{3953607904109}{31859099053366} a^{6} + \frac{14073182416451}{31859099053366} a^{5} + \frac{1339853919464}{15929549526683} a^{4} - \frac{3466465045905}{31859099053366} a^{3} - \frac{6110352578019}{15929549526683} a^{2} - \frac{880207775853}{2450699927182} a - \frac{52030826577}{188515379014}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31959664273.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{901}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{17}, \sqrt{53})\), 4.4.4913.1, 4.4.13800617.2, 8.8.190457029580689.3, 8.8.1152641332457.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $53$ | 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |