Normalized defining polynomial
\( x^{16} - 4 x^{15} - 64 x^{14} + 296 x^{13} + 1154 x^{12} - 6084 x^{11} - 8176 x^{10} + 48352 x^{9} + 38794 x^{8} - 179028 x^{7} - 143096 x^{6} + 282880 x^{5} + 264382 x^{4} - 123492 x^{3} - 138960 x^{2} - 5400 x + 3321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10455582754471936000000000000=2^{40}\cdot 5^{12}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{150} a^{13} + \frac{1}{75} a^{12} + \frac{11}{150} a^{11} - \frac{17}{75} a^{10} + \frac{29}{150} a^{9} - \frac{4}{25} a^{8} + \frac{1}{3} a^{7} + \frac{11}{75} a^{6} - \frac{11}{150} a^{5} + \frac{7}{25} a^{4} - \frac{71}{150} a^{3} + \frac{26}{75} a^{2} + \frac{37}{150} a - \frac{7}{25}$, $\frac{1}{4950} a^{14} - \frac{1}{495} a^{13} - \frac{29}{2475} a^{12} - \frac{398}{2475} a^{11} - \frac{343}{4950} a^{10} + \frac{58}{825} a^{9} - \frac{326}{2475} a^{8} - \frac{589}{2475} a^{7} + \frac{5}{18} a^{6} + \frac{14}{825} a^{5} + \frac{94}{495} a^{4} + \frac{722}{2475} a^{3} + \frac{1513}{4950} a^{2} + \frac{18}{275} a + \frac{63}{275}$, $\frac{1}{4604641167935573438850} a^{15} + \frac{96643809614111803}{2302320583967786719425} a^{14} - \frac{5354218352253489161}{2302320583967786719425} a^{13} - \frac{68646558852414408506}{2302320583967786719425} a^{12} - \frac{568085849749912436234}{2302320583967786719425} a^{11} - \frac{743047084305268481}{85271132739547656275} a^{10} + \frac{5109795643829036063}{460464116793557343885} a^{9} + \frac{508860248786492187413}{2302320583967786719425} a^{8} + \frac{1249522141300829736277}{4604641167935573438850} a^{7} + \frac{37480197108758909399}{85271132739547656275} a^{6} + \frac{297529687923203410634}{2302320583967786719425} a^{5} + \frac{584362411829161628063}{2302320583967786719425} a^{4} + \frac{327883197919957127243}{2302320583967786719425} a^{3} - \frac{43923946362574324721}{767440194655928906475} a^{2} - \frac{7462519465651882022}{17054226547909531255} a - \frac{37344718677859498342}{85271132739547656275}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 772655833.855 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.1 | $x^{2} - 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |