Normalized defining polynomial
\( x^{16} - 5 x^{15} - 1520 x^{14} + 16523 x^{13} + 655405 x^{12} - 10799728 x^{11} - 58356778 x^{10} + 1864600258 x^{9} - 4621996848 x^{8} - 98875841022 x^{7} + 638807569630 x^{6} + 400115166704 x^{5} - 14975139902151 x^{4} + 55925689327219 x^{3} - 94914904681696 x^{2} + 78330056885859 x - 25448748825979 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103591320678630890586725126366901805607295040854289=37^{14}\cdot 101^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1336.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8} a + \frac{3}{16}$, $\frac{1}{48} a^{10} + \frac{1}{48} a^{9} + \frac{1}{12} a^{8} + \frac{1}{16} a^{7} - \frac{1}{48} a^{6} + \frac{1}{16} a^{4} - \frac{5}{48} a^{3} - \frac{5}{12} a^{2} + \frac{3}{16} a - \frac{11}{48}$, $\frac{1}{48} a^{11} + \frac{5}{48} a^{8} + \frac{1}{24} a^{7} - \frac{1}{24} a^{6} + \frac{1}{16} a^{5} - \frac{1}{6} a^{4} - \frac{1}{48} a^{2} - \frac{1}{24} a - \frac{11}{24}$, $\frac{1}{288} a^{12} + \frac{1}{144} a^{10} - \frac{1}{36} a^{9} + \frac{7}{72} a^{8} + \frac{5}{144} a^{7} + \frac{11}{144} a^{6} - \frac{1}{9} a^{5} + \frac{3}{16} a^{4} + \frac{5}{36} a^{3} - \frac{1}{24} a^{2} - \frac{41}{144} a - \frac{7}{288}$, $\frac{1}{288} a^{13} + \frac{1}{144} a^{11} - \frac{1}{144} a^{10} - \frac{1}{144} a^{9} + \frac{17}{144} a^{8} - \frac{1}{9} a^{7} - \frac{1}{144} a^{6} + \frac{3}{16} a^{5} + \frac{29}{144} a^{4} - \frac{1}{48} a^{3} + \frac{43}{144} a^{2} + \frac{119}{288} a - \frac{17}{48}$, $\frac{1}{864} a^{14} - \frac{1}{864} a^{13} + \frac{1}{864} a^{12} + \frac{1}{108} a^{11} - \frac{1}{432} a^{10} + \frac{13}{432} a^{9} - \frac{35}{432} a^{8} - \frac{2}{27} a^{7} - \frac{5}{54} a^{6} - \frac{1}{4} a^{5} - \frac{107}{432} a^{4} - \frac{73}{432} a^{3} - \frac{25}{288} a^{2} - \frac{199}{864} a + \frac{295}{864}$, $\frac{1}{10237709505131647810743981385767909290190969666391247271833272835057172554027136} a^{15} + \frac{1949856432531817892964324301285632825811153152171019840189523538628994312093}{5118854752565823905371990692883954645095484833195623635916636417528586277013568} a^{14} - \frac{2538739294470433604301289956792693267965384965406222074593510676669330645889}{5118854752565823905371990692883954645095484833195623635916636417528586277013568} a^{13} - \frac{3163973001919171816997762477688287682070908348900397663112355368310850497071}{10237709505131647810743981385767909290190969666391247271833272835057172554027136} a^{12} - \frac{3684270970368730472633303798837854181541211846511745793684965660960979808293}{639856844070727988171498836610494330636935604149452954489579552191073284626696} a^{11} + \frac{1835428421783827797541558694450327927992032712019293175564755883156671636559}{319928422035363994085749418305247165318467802074726477244789776095536642313348} a^{10} - \frac{769699807314704066569178734802434146507779821062334999583076301517694723415}{189587213057993477976740396032739060929462401229467542070986533982540232481984} a^{9} - \frac{1808842392897718166031960253253972833312456570045657516283982082915905559583}{853142458760970650895331782147325774182580805532603939319439402921431046168928} a^{8} - \frac{121579822107701146143017102814835750223835454439953163913160084365439254984187}{2559427376282911952685995346441977322547742416597811817958318208764293138506784} a^{7} - \frac{434438001560330812195078384653571207808083786060254873801876469554570814941773}{5118854752565823905371990692883954645095484833195623635916636417528586277013568} a^{6} + \frac{153827878618344605724127890928832049025748191908476949908677720608088890961829}{639856844070727988171498836610494330636935604149452954489579552191073284626696} a^{5} + \frac{50319432307643413775582167348893423492837662526799941862180554916544345810437}{319928422035363994085749418305247165318467802074726477244789776095536642313348} a^{4} - \frac{1274339422853350331179027798253535921461819008746265520145144772808581187615767}{10237709505131647810743981385767909290190969666391247271833272835057172554027136} a^{3} + \frac{1068371852660561768519866410160903665412653529475612445204889004573602414608877}{5118854752565823905371990692883954645095484833195623635916636417528586277013568} a^{2} + \frac{1790935625948976758597633398251183135808632102215335609239788088030032389261927}{5118854752565823905371990692883954645095484833195623635916636417528586277013568} a + \frac{4593568305359604755181825131634164063427229471935277026913759829264389751925977}{10237709505131647810743981385767909290190969666391247271833272835057172554027136}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19385888029400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.8.7.1 | $x^{8} - 101$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 101.8.7.1 | $x^{8} - 101$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |