Normalized defining polynomial
\( x^{16} - 4 x^{15} - 34 x^{14} + 128 x^{13} + 405 x^{12} - 1432 x^{11} - 2170 x^{10} + 7268 x^{9} + 5686 x^{8} - 17924 x^{7} - 7538 x^{6} + 21352 x^{5} + 4801 x^{4} - 10640 x^{3} - 1282 x^{2} + 1124 x + 191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10249598790959829536343064576=2^{44}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(272=2^{4}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{272}(1,·)$, $\chi_{272}(69,·)$, $\chi_{272}(225,·)$, $\chi_{272}(137,·)$, $\chi_{272}(13,·)$, $\chi_{272}(205,·)$, $\chi_{272}(81,·)$, $\chi_{272}(149,·)$, $\chi_{272}(217,·)$, $\chi_{272}(89,·)$, $\chi_{272}(157,·)$, $\chi_{272}(33,·)$, $\chi_{272}(101,·)$, $\chi_{272}(169,·)$, $\chi_{272}(237,·)$, $\chi_{272}(21,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{24} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{5}{12} a^{8} - \frac{1}{3} a^{7} - \frac{5}{12} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{24}$, $\frac{1}{24} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{5}{12} a^{9} - \frac{1}{3} a^{8} - \frac{5}{12} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{24} a$, $\frac{1}{1829424} a^{14} - \frac{5445}{304904} a^{13} + \frac{1951}{1829424} a^{12} + \frac{69409}{457356} a^{11} + \frac{68863}{304904} a^{10} - \frac{27399}{76226} a^{9} + \frac{4526}{38113} a^{8} - \frac{137207}{457356} a^{7} + \frac{129815}{304904} a^{6} + \frac{27803}{457356} a^{5} - \frac{69823}{457356} a^{4} + \frac{65713}{152452} a^{3} - \frac{301089}{609808} a^{2} - \frac{115799}{914712} a + \frac{105203}{1829424}$, $\frac{1}{74000433136848} a^{15} + \frac{1452493}{37000216568424} a^{14} + \frac{610197250399}{74000433136848} a^{13} - \frac{16907980742}{4625027071053} a^{12} - \frac{8103666770339}{37000216568424} a^{11} + \frac{1588558622719}{9250054142106} a^{10} - \frac{172827195215}{4625027071053} a^{9} - \frac{1730969769799}{6166702761404} a^{8} + \frac{1804446165063}{12333405522808} a^{7} - \frac{3225925917623}{18500108284212} a^{6} + \frac{2615922984041}{18500108284212} a^{5} - \frac{240767435803}{6166702761404} a^{4} - \frac{25437502590323}{74000433136848} a^{3} + \frac{2926304364887}{12333405522808} a^{2} + \frac{32014803845491}{74000433136848} a - \frac{3520212346849}{18500108284212}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1179476773.631501 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |