Normalized defining polynomial
\( x^{16} - 152 x^{14} + 7296 x^{12} - 120144 x^{10} + 689800 x^{8} - 1842528 x^{6} + 2495872 x^{4} - 1646144 x^{2} + 411536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102409204095580621592359633279778816=2^{56}\cdot 17^{10}\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{16} a^{9} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{80} a^{10} + \frac{1}{10} a^{6} + \frac{9}{20} a^{2} - \frac{2}{5}$, $\frac{1}{80} a^{11} + \frac{1}{10} a^{7} + \frac{9}{20} a^{3} - \frac{2}{5} a$, $\frac{1}{2720} a^{12} - \frac{1}{170} a^{10} - \frac{41}{1360} a^{8} - \frac{41}{340} a^{6} - \frac{151}{680} a^{4} + \frac{1}{10} a^{2} + \frac{7}{20}$, $\frac{1}{5440} a^{13} + \frac{9}{2720} a^{11} - \frac{41}{2720} a^{9} - \frac{7}{680} a^{7} - \frac{151}{1360} a^{5} - \frac{9}{40} a^{3} + \frac{19}{40} a$, $\frac{1}{11161193670720} a^{14} + \frac{312457}{465049736280} a^{12} + \frac{738360359}{206688771680} a^{10} - \frac{25515490243}{930099472560} a^{8} - \frac{39491387623}{558059683536} a^{6} - \frac{16200782989}{697574604420} a^{4} + \frac{16091907317}{82067600520} a^{2} - \frac{19481418983}{41033800260}$, $\frac{1}{11161193670720} a^{15} + \frac{312457}{465049736280} a^{13} + \frac{738360359}{206688771680} a^{11} - \frac{25515490243}{930099472560} a^{9} - \frac{39491387623}{558059683536} a^{7} - \frac{16200782989}{697574604420} a^{5} + \frac{16091907317}{82067600520} a^{3} - \frac{19481418983}{41033800260} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15067369753300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1472 are not computed |
| Character table for t16n1472 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.7794452332544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.28.84 | $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 20 x^{4} + 8 x^{2} + 14$ | $8$ | $1$ | $28$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 9/2]^{2}$ |
| 2.8.28.83 | $x^{8} + 24 x^{6} + 30 x^{4} + 8 x^{2} + 15$ | $8$ | $1$ | $28$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 9/2]^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||