Normalized defining polynomial
\( x^{16} - 3 x^{15} - 246 x^{14} + 946 x^{13} + 20060 x^{12} - 88305 x^{11} - 734082 x^{10} + 3680393 x^{9} + 12415935 x^{8} - 75326536 x^{7} - 73978895 x^{6} + 716474892 x^{5} - 173717859 x^{4} - 2428250331 x^{3} + 1392532762 x^{2} + 1942920230 x - 120710321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1022187390863100363395289742578125=5^{8}\cdot 13^{10}\cdot 29^{7}\cdot 1049^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{55} a^{14} - \frac{17}{55} a^{13} - \frac{7}{55} a^{12} - \frac{18}{55} a^{11} + \frac{2}{11} a^{10} - \frac{23}{55} a^{9} + \frac{1}{11} a^{8} - \frac{5}{11} a^{7} - \frac{3}{11} a^{6} - \frac{1}{55} a^{5} + \frac{9}{55} a^{4} - \frac{1}{11} a^{3} - \frac{1}{11} a^{2} + \frac{9}{55} a + \frac{6}{55}$, $\frac{1}{6681277402156549510937794737058439450184333362310714542327455} a^{15} + \frac{26251415764772073085293216612594618928501895964622758481869}{6681277402156549510937794737058439450184333362310714542327455} a^{14} + \frac{2949572205510940509994606844374775407091578830966801902489031}{6681277402156549510937794737058439450184333362310714542327455} a^{13} + \frac{535713924474747579621483918504351385178324143645479979266410}{1336255480431309902187558947411687890036866672462142908465491} a^{12} - \frac{3087958519462743077337098658227300000263725407160171352253353}{6681277402156549510937794737058439450184333362310714542327455} a^{11} + \frac{184546950103841750665442571322049203661371935798509256580202}{6681277402156549510937794737058439450184333362310714542327455} a^{10} + \frac{2260763595054943528354583209422708739168962486626985549070607}{6681277402156549510937794737058439450184333362310714542327455} a^{9} + \frac{23498171731672453447777615056162904818532528920478649993777}{70329235812174205378292576179562520528256140655902258340289} a^{8} - \frac{95787542613809859111648834508947404437721175176500255925592}{1336255480431309902187558947411687890036866672462142908465491} a^{7} - \frac{1951359248238042304336695201043327138309184226941604301247161}{6681277402156549510937794737058439450184333362310714542327455} a^{6} - \frac{2502652001094677798169555700825890999230215971361846364344812}{6681277402156549510937794737058439450184333362310714542327455} a^{5} + \frac{1382105792537292360154740314159182276489694297251656565501094}{6681277402156549510937794737058439450184333362310714542327455} a^{4} - \frac{71553028492785242232566537212091777838595658325082000633385}{1336255480431309902187558947411687890036866672462142908465491} a^{3} - \frac{160929501413216314719642770097440017187311985349197459270266}{607388854741504500994344976096221768198575760210064958393405} a^{2} + \frac{286766067312318506222380079210300962879642378551305770902467}{1336255480431309902187558947411687890036866672462142908465491} a + \frac{2056132534446983230203121009840412295810348957856745080129841}{6681277402156549510937794737058439450184333362310714542327455}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91596632835.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.2576088125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 13.8.4.2 | $x^{8} + 169 x^{4} - 2197 x^{2} + 57122$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1049 | Data not computed | ||||||