Normalized defining polynomial
\( x^{16} - 4 x^{15} - 548 x^{14} + 2088 x^{13} + 110802 x^{12} - 451356 x^{11} - 10768336 x^{10} + 46124992 x^{9} + 542450360 x^{8} - 2261845988 x^{7} - 14780454956 x^{6} + 52722098664 x^{5} + 221710558722 x^{4} - 528960304284 x^{3} - 1673580561096 x^{2} + 1473945897104 x + 3640607603231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101075408216203634510751650650521600000000=2^{40}\cdot 3^{4}\cdot 5^{8}\cdot 13^{8}\cdot 1249^{2}\cdot 1511^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $365.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 1249, 1511$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{12}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{4} a^{9} + \frac{1}{6} a^{8} - \frac{1}{4} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{12} a^{14} - \frac{1}{4} a^{10} + \frac{1}{6} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{15} + \frac{1635405789823039219689084153160534393048002976176160002216949453296772150}{50471675212181373068939976635866099992543939723189326941049605358073550239} a^{14} + \frac{3597190930161803721770002659743141050919904766889728298006159004368849009}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{13} - \frac{1233425182887706069360480169127356046368697878579941043191013708565254561}{67295566949575164091919968847821466656725252964252435921399473810764733652} a^{12} - \frac{34761764598262021045381785862937732433658269507821085492717837287420420783}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{11} - \frac{24138970612934575529744902798844080742906012979864306135316736724579582371}{100943350424362746137879953271732199985087879446378653882099210716147100478} a^{10} + \frac{15769061198693656188391676084858571167093235870247827763693877573714410523}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{9} + \frac{667537592547314057311663693260014672647119080976415201432908440217773001}{67295566949575164091919968847821466656725252964252435921399473810764733652} a^{8} + \frac{17779900549436309916892945736054082561902685969768564544126304415361436459}{67295566949575164091919968847821466656725252964252435921399473810764733652} a^{7} - \frac{20973866088419269535918734897356259479145026480482268015454321313968480178}{50471675212181373068939976635866099992543939723189326941049605358073550239} a^{6} - \frac{1393243899778183486456490543806688850474097885444649138531962607248342925}{67295566949575164091919968847821466656725252964252435921399473810764733652} a^{5} - \frac{74551018457863463123163338916027155341644957547089140320525535156004922915}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{4} - \frac{13753473298969898604889713181703027769860939844715383579719972344638807995}{201886700848725492275759906543464399970175758892757307764198421432294200956} a^{3} - \frac{6612205962282376468883095044126484433332421744204290302995376634304797905}{33647783474787582045959984423910733328362626482126217960699736905382366826} a^{2} - \frac{81854996102410987793599819795523005766443415931596058768702611766518643925}{201886700848725492275759906543464399970175758892757307764198421432294200956} a + \frac{20072890744678144256185941633737320353480754207670927520720851318400675973}{67295566949575164091919968847821466656725252964252435921399473810764733652}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1082596963460000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 133 conjugacy class representatives for t16n1547 are not computed |
| Character table for t16n1547 is not computed |
Intermediate fields
| \(\Q(\sqrt{26}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{13})\), 8.8.421149081600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1249 | Data not computed | ||||||
| 1511 | Data not computed | ||||||