Normalized defining polynomial
\( x^{16} - 5 x^{15} - 787 x^{14} + 5051 x^{13} + 224913 x^{12} - 1883696 x^{11} - 26837605 x^{10} + 308362799 x^{9} + 840421984 x^{8} - 20027658582 x^{7} + 49055322017 x^{6} + 242254120296 x^{5} - 1022348955259 x^{4} - 574159811286 x^{3} + 5148673520590 x^{2} - 479019525519 x - 6904626882871 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(100677405300724224532172039540740068462931681=41^{14}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $562.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a - \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{10} a$, $\frac{1}{10} a^{14} - \frac{1}{2} a^{9} + \frac{3}{10} a^{8} + \frac{3}{10} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{15} - \frac{147511207286384914007845564629144232619640641195844205908875459849947232631857333023}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{14} + \frac{91374815255657040125856092055664489433518709948679821115519675025716706981913191969}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{13} - \frac{155793572001732707552043815360986498197074058383643971379749233858702922930935429324}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{12} + \frac{1251143899714789804024114363836285916650947673060261331764711008305817974463952818601}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{11} + \frac{2243682306825091606347982533139525424882593325775962709155698280614519886238558637083}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{10} - \frac{7582712530493898680399784953069706392882195638095861412224429754438967759896111699003}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{9} + \frac{7892708489058433510346246535107182431496391769357505186689998593717131767612517998677}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a^{8} + \frac{4317540642703529153317475069459118023566471668671136732584122101935676451741583619616}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{7} - \frac{847555965563409627535742800652219781457547040532355591608482781517013393747152319112}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{6} + \frac{3658745717356023309041344053066387173491947906828792443995731267603255788836122048648}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{5} - \frac{1000241905721741237743392478239084176532742646913892425065973332740991972337776852233}{3714865939594090809523948282293589254513492638188296594457780047474862996806155282530} a^{4} - \frac{2550426343046664031352045068467661957192456215229242839661068075950365512131722832842}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{3} - \frac{860630313085117917765540781757189675932192333787483196012486874681319759702228570791}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325} a^{2} - \frac{6441718055570123217519326425336964892779643428739491957975335262949330458454135045003}{18574329697970454047619741411467946272567463190941482972288900237374314984030776412650} a + \frac{1855405010486153735477377575557702717940521599427301170122485748416839766802605234377}{9287164848985227023809870705733973136283731595470741486144450118687157492015388206325}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18082637024000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{2501}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{41}, \sqrt{61})\), 4.4.256455041.1 x2, 4.4.4204181.1 x2, 8.8.65769188054311681.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |