Properties

Label 16.14.7150381731...0000.1
Degree $16$
Signature $[14, 1]$
Discriminant $-\,2^{4}\cdot 5^{9}\cdot 7^{8}\cdot 251^{4}$
Root discriminant $30.97$
Ramified primes $2, 5, 7, 251$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1806

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -14, -12, 168, 227, -561, -753, 660, 964, -265, -561, -3, 153, 14, -21, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 21*x^14 + 14*x^13 + 153*x^12 - 3*x^11 - 561*x^10 - 265*x^9 + 964*x^8 + 660*x^7 - 753*x^6 - 561*x^5 + 227*x^4 + 168*x^3 - 12*x^2 - 14*x - 1)
 
gp: K = bnfinit(x^16 - x^15 - 21*x^14 + 14*x^13 + 153*x^12 - 3*x^11 - 561*x^10 - 265*x^9 + 964*x^8 + 660*x^7 - 753*x^6 - 561*x^5 + 227*x^4 + 168*x^3 - 12*x^2 - 14*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 21 x^{14} + 14 x^{13} + 153 x^{12} - 3 x^{11} - 561 x^{10} - 265 x^{9} + 964 x^{8} + 660 x^{7} - 753 x^{6} - 561 x^{5} + 227 x^{4} + 168 x^{3} - 12 x^{2} - 14 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-715038173115337531250000=-\,2^{4}\cdot 5^{9}\cdot 7^{8}\cdot 251^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 251$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37534198439} a^{15} + \frac{10159686138}{37534198439} a^{14} + \frac{14572790349}{37534198439} a^{13} + \frac{10523300609}{37534198439} a^{12} - \frac{17181399167}{37534198439} a^{11} + \frac{3569650058}{37534198439} a^{10} + \frac{14155371895}{37534198439} a^{9} + \frac{12987681223}{37534198439} a^{8} - \frac{16616746427}{37534198439} a^{7} + \frac{9489919121}{37534198439} a^{6} - \frac{10826366460}{37534198439} a^{5} - \frac{10360910903}{37534198439} a^{4} + \frac{8332170421}{37534198439} a^{3} + \frac{6696096643}{37534198439} a^{2} + \frac{16600068312}{37534198439} a - \frac{312846421}{37534198439}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4952270.5458 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1806:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24576
The 88 conjugacy class representatives for t16n1806 are not computed
Character table for t16n1806 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.94540875625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.12.0.1$x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.12.8.1$x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
251Data not computed