Normalized defining polynomial
\( x^{16} - 488 x^{14} + 89720 x^{12} - 7274880 x^{10} + 175440370 x^{8} + 8802042632 x^{6} - 496964895416 x^{4} + 4478436792880 x^{2} + 7617130807225 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(969363393189495136925157683101696000000=2^{56}\cdot 5^{6}\cdot 41^{6}\cdot 13463^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $273.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 13463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{20} a^{8} - \frac{1}{10} a^{4} + \frac{1}{5} a^{2} - \frac{1}{4}$, $\frac{1}{20} a^{9} - \frac{1}{10} a^{5} + \frac{1}{5} a^{3} - \frac{1}{4} a$, $\frac{1}{20} a^{10} - \frac{1}{10} a^{6} + \frac{1}{5} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{7} + \frac{1}{5} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{100} a^{12} - \frac{1}{50} a^{10} - \frac{1}{100} a^{8} - \frac{2}{25} a^{6} - \frac{39}{100} a^{4} + \frac{1}{10} a^{2} - \frac{1}{4}$, $\frac{1}{100} a^{13} - \frac{1}{50} a^{11} - \frac{1}{100} a^{9} - \frac{2}{25} a^{7} - \frac{39}{100} a^{5} + \frac{1}{10} a^{3} - \frac{1}{4} a$, $\frac{1}{1771800886574550806731516127870690646500} a^{14} - \frac{55229668614895553241914261162592961}{12655720618389648619510829484790647475} a^{12} - \frac{1588068801493725835186375473142505571}{70872035462982032269260645114827625860} a^{10} - \frac{516688075995427789608482500731022231}{354360177314910161346303225574138129300} a^{8} - \frac{14164636077469675195620878575636851119}{354360177314910161346303225574138129300} a^{6} + \frac{113301927045989830096002565970130652611}{885900443287275403365758063935345323250} a^{4} + \frac{13915503537254428746436694284246882419}{50622882473558594478043317939162589900} a^{2} - \frac{22327122351083656006628893094371}{128395322796140519308132035071420}$, $\frac{1}{1771800886574550806731516127870690646500} a^{15} - \frac{55229668614895553241914261162592961}{12655720618389648619510829484790647475} a^{13} - \frac{1588068801493725835186375473142505571}{70872035462982032269260645114827625860} a^{11} - \frac{516688075995427789608482500731022231}{354360177314910161346303225574138129300} a^{9} - \frac{14164636077469675195620878575636851119}{354360177314910161346303225574138129300} a^{7} + \frac{113301927045989830096002565970130652611}{885900443287275403365758063935345323250} a^{5} + \frac{13915503537254428746436694284246882419}{50622882473558594478043317939162589900} a^{3} - \frac{22327122351083656006628893094371}{128395322796140519308132035071420} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25690093589300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 58 conjugacy class representatives for t16n1127 are not computed |
| Character table for t16n1127 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.44066406400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13463 | Data not computed | ||||||