Normalized defining polynomial
\( x^{16} - 40 x^{14} - 88 x^{13} + 392 x^{12} + 2400 x^{11} + 2544 x^{10} - 18160 x^{9} - 61060 x^{8} - 17568 x^{7} + 289256 x^{6} + 654904 x^{5} - 176464 x^{4} - 1937600 x^{3} - 824504 x^{2} + 1011312 x - 162479 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90819108489560418567132807168=2^{56}\cdot 3^{8}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{47} a^{13} + \frac{7}{47} a^{12} + \frac{5}{47} a^{11} - \frac{16}{47} a^{10} + \frac{10}{47} a^{9} - \frac{8}{47} a^{8} - \frac{2}{47} a^{7} - \frac{8}{47} a^{6} - \frac{11}{47} a^{5} + \frac{23}{47} a^{4} - \frac{15}{47} a^{3} - \frac{13}{47} a^{2} - \frac{19}{47} a$, $\frac{1}{235} a^{14} - \frac{2}{235} a^{13} - \frac{21}{47} a^{12} + \frac{16}{47} a^{11} + \frac{107}{235} a^{10} - \frac{4}{235} a^{9} - \frac{71}{235} a^{8} - \frac{37}{235} a^{7} + \frac{108}{235} a^{6} - \frac{66}{235} a^{5} - \frac{34}{235} a^{4} - \frac{19}{235} a^{3} - \frac{18}{47} a^{2} - \frac{64}{235} a + \frac{2}{5}$, $\frac{1}{62084277421105219918595921727751267765} a^{15} + \frac{72550054706402882159208392313546807}{62084277421105219918595921727751267765} a^{14} - \frac{421147911774527817134879300079839968}{62084277421105219918595921727751267765} a^{13} - \frac{5817211584928147972426196841448925112}{12416855484221043983719184345550253553} a^{12} + \frac{26632065160307069107456434956129937432}{62084277421105219918595921727751267765} a^{11} - \frac{10483128937588772697313660233762456236}{62084277421105219918595921727751267765} a^{10} - \frac{20079276536668243055980100946791303192}{62084277421105219918595921727751267765} a^{9} + \frac{5223003079181377294366158312805432544}{62084277421105219918595921727751267765} a^{8} + \frac{3829377936313850213303072399800504327}{12416855484221043983719184345550253553} a^{7} - \frac{1332565443334071296690811386483544044}{62084277421105219918595921727751267765} a^{6} + \frac{30933932890819755203256180692011395097}{62084277421105219918595921727751267765} a^{5} - \frac{446811059199952960942033850033445794}{12416855484221043983719184345550253553} a^{4} + \frac{15122494819213126651710402857431257284}{62084277421105219918595921727751267765} a^{3} - \frac{4197485387529344594300153465413060289}{62084277421105219918595921727751267765} a^{2} + \frac{5379640126012965667295680490121783833}{62084277421105219918595921727751267765} a + \frac{136591815220002017183594995197594193}{1320942072789472764225445143143643995}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1200446045.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 71 conjugacy class representatives for t16n1379 are not computed |
| Character table for t16n1379 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.4.18432.1, \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{48})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 577 | Data not computed | ||||||