Normalized defining polynomial
\( x^{16} - 3 x^{15} - 48 x^{14} - 122 x^{13} + 481 x^{12} + 8150 x^{11} + 20561 x^{10} - 76067 x^{9} - 548175 x^{8} - 241659 x^{7} + 4598000 x^{6} + 3143799 x^{5} - 16209686 x^{4} - 7154965 x^{3} + 24199071 x^{2} + 4282958 x - 11903533 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90390672967514567934462041097091729=61^{4}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{452} a^{14} + \frac{5}{113} a^{13} - \frac{14}{113} a^{12} + \frac{39}{226} a^{11} - \frac{53}{226} a^{10} - \frac{14}{113} a^{9} - \frac{49}{452} a^{8} + \frac{45}{226} a^{7} + \frac{17}{452} a^{6} - \frac{105}{226} a^{5} + \frac{13}{452} a^{4} - \frac{11}{113} a^{3} - \frac{39}{452} a^{2} - \frac{56}{113} a$, $\frac{1}{20333800176097657649863671229936634362773770314852} a^{15} - \frac{4176080700767817746987503309392374332316334035}{10166900088048828824931835614968317181386885157426} a^{14} - \frac{581209206782096714856951566334391467288440173163}{5083450044024414412465917807484158590693442578713} a^{13} - \frac{2000272160976763911622695044924080294378106554949}{20333800176097657649863671229936634362773770314852} a^{12} - \frac{3897197475516565597288431695470693521717514973}{18897583806782209711769211180238507772094582077} a^{11} + \frac{286179202473006978460446468926651300215500160261}{5083450044024414412465917807484158590693442578713} a^{10} + \frac{1923334115196126581817438625328365637718041607735}{20333800176097657649863671229936634362773770314852} a^{9} + \frac{902048954841425459836443896544976592363716529185}{5083450044024414412465917807484158590693442578713} a^{8} - \frac{3874699394083622003183669449230228672501635370401}{20333800176097657649863671229936634362773770314852} a^{7} + \frac{1899594196456594597414901958206276755617826343391}{20333800176097657649863671229936634362773770314852} a^{6} - \frac{8680633780326329030778405241178722930410924036361}{20333800176097657649863671229936634362773770314852} a^{5} - \frac{3668270550523329786547796180103811123512958405803}{20333800176097657649863671229936634362773770314852} a^{4} - \frac{9948991006314122589068077120744748863951682196587}{20333800176097657649863671229936634362773770314852} a^{3} - \frac{9362829643946160351192762842773211727368348372181}{20333800176097657649863671229936634362773770314852} a^{2} + \frac{2054941220026006544520966234039765573181959280934}{5083450044024414412465917807484158590693442578713} a + \frac{46599338616895715661069662426889979243748497917}{179945134301749182742156382565810923564369648804}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 800848035390 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |