Properties

Label 16.12.8881392863...0000.2
Degree $16$
Signature $[12, 2]$
Discriminant $2^{24}\cdot 3^{10}\cdot 5^{13}\cdot 271^{2}$
Root discriminant $41.86$
Ramified primes $2, 3, 5, 271$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1584

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1051, -5704, 7260, 6156, -22450, 13990, 13432, -19506, 2992, 4972, -1652, -442, 123, 60, -6, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 - 6*x^14 + 60*x^13 + 123*x^12 - 442*x^11 - 1652*x^10 + 4972*x^9 + 2992*x^8 - 19506*x^7 + 13432*x^6 + 13990*x^5 - 22450*x^4 + 6156*x^3 + 7260*x^2 - 5704*x + 1051)
 
gp: K = bnfinit(x^16 - 6*x^15 - 6*x^14 + 60*x^13 + 123*x^12 - 442*x^11 - 1652*x^10 + 4972*x^9 + 2992*x^8 - 19506*x^7 + 13432*x^6 + 13990*x^5 - 22450*x^4 + 6156*x^3 + 7260*x^2 - 5704*x + 1051, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} - 6 x^{14} + 60 x^{13} + 123 x^{12} - 442 x^{11} - 1652 x^{10} + 4972 x^{9} + 2992 x^{8} - 19506 x^{7} + 13432 x^{6} + 13990 x^{5} - 22450 x^{4} + 6156 x^{3} + 7260 x^{2} - 5704 x + 1051 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(88813928632320000000000000=2^{24}\cdot 3^{10}\cdot 5^{13}\cdot 271^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 271$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{5629624237392231965253} a^{15} + \frac{8788603502061624385}{1876541412464077321751} a^{14} - \frac{872757937508411528617}{5629624237392231965253} a^{13} + \frac{239176060310198967658}{5629624237392231965253} a^{12} + \frac{108911139059035389549}{1876541412464077321751} a^{11} + \frac{1511294347163671329344}{5629624237392231965253} a^{10} + \frac{655311445029868673913}{1876541412464077321751} a^{9} - \frac{2527038768488415557830}{5629624237392231965253} a^{8} - \frac{410497574325725799203}{5629624237392231965253} a^{7} - \frac{808072757543924601571}{1876541412464077321751} a^{6} - \frac{1938039055081156275446}{5629624237392231965253} a^{5} + \frac{1030931956268395186430}{5629624237392231965253} a^{4} - \frac{662147868785547418966}{5629624237392231965253} a^{3} + \frac{563122490965779064305}{1876541412464077321751} a^{2} - \frac{1999045412297980215128}{5629624237392231965253} a + \frac{2383107373426183713044}{5629624237392231965253}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32320657.1337 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1584:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 73 conjugacy class representatives for t16n1584 are not computed
Character table for t16n1584 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.8.87804000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R $16$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.7.1$x^{8} - 5$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
271Data not computed