Normalized defining polynomial
\( x^{16} - 4 x^{15} - 138 x^{14} + 161 x^{13} + 7902 x^{12} + 15299 x^{11} - 230205 x^{10} - 1118637 x^{9} + 3091178 x^{8} + 24361457 x^{7} + 6505217 x^{6} - 141618630 x^{5} - 885218873 x^{4} - 1274011149 x^{3} + 12277163359 x^{2} + 12256345154 x - 55934785129 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{180308462368977642243538889312721913645834562262109487762150013269} a^{15} + \frac{51873371498968166795656242109957561084052812128219862893263011945}{180308462368977642243538889312721913645834562262109487762150013269} a^{14} - \frac{31725540821213834019905862919750556957873047964577026442462107872}{180308462368977642243538889312721913645834562262109487762150013269} a^{13} + \frac{32484030940537372587472278631392001286344937504507016289150688813}{180308462368977642243538889312721913645834562262109487762150013269} a^{12} + \frac{75584511291611226435352393107563055183196677539096352497543451105}{180308462368977642243538889312721913645834562262109487762150013269} a^{11} - \frac{49974365904843506553352405679826099759206657758308879432847611171}{180308462368977642243538889312721913645834562262109487762150013269} a^{10} - \frac{82196689184573442284788234642449883653845981235315699498177286423}{180308462368977642243538889312721913645834562262109487762150013269} a^{9} - \frac{82865098550751521336950401709143133666167611264114595806658438499}{180308462368977642243538889312721913645834562262109487762150013269} a^{8} - \frac{50787770235764875306411562011240748016532429901850658788614804556}{180308462368977642243538889312721913645834562262109487762150013269} a^{7} - \frac{46930946981319594213145118383458099004848560074656445046960030288}{180308462368977642243538889312721913645834562262109487762150013269} a^{6} + \frac{16269249572356819038578242971945889847648437867252614796275778182}{180308462368977642243538889312721913645834562262109487762150013269} a^{5} + \frac{37821063231735781033310811034870145436990490265298753976939057861}{180308462368977642243538889312721913645834562262109487762150013269} a^{4} + \frac{82354380508127228127058712815859324126295709187915490134136653058}{180308462368977642243538889312721913645834562262109487762150013269} a^{3} + \frac{86641332574670089680396742265099259717420744578885520225703866723}{180308462368977642243538889312721913645834562262109487762150013269} a^{2} + \frac{89576641791896471987012390057040313987075828043682051240671388870}{180308462368977642243538889312721913645834562262109487762150013269} a - \frac{14302544655864455453023357006205469582630501107642174387895039931}{180308462368977642243538889312721913645834562262109487762150013269}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2697567588720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||