Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} + 14 x^{13} - 101 x^{12} + 60 x^{11} + 179 x^{10} - 158 x^{9} - 204 x^{8} + \cdots - 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[12, 2]$ |
| |
| Discriminant: |
\(83530755611033600000000\)
\(\medspace = 2^{24}\cdot 5^{8}\cdot 151^{2}\cdot 559001\)
|
| |
| Root discriminant: | \(27.08\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(151\), \(559001\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{559001}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$16a^{14}-112a^{13}+205a^{12}+226a^{11}-1019a^{10}+354a^{9}+1367a^{8}-530a^{7}-1293a^{6}-70a^{5}+1091a^{4}+278a^{3}-409a^{2}-104a+9$, $a^{2}-a-1$, $17a^{14}-119a^{13}+217a^{12}+245a^{11}-1089a^{10}+363a^{9}+1485a^{8}-561a^{7}-1410a^{6}-82a^{5}+1183a^{4}+316a^{3}-447a^{2}-118a+12$, $a^{14}-7a^{13}+12a^{12}+19a^{11}-70a^{10}+9a^{9}+118a^{8}-31a^{7}-117a^{6}-12a^{5}+92a^{4}+38a^{3}-38a^{2}-14a+3$, $17a^{14}-119a^{13}+217a^{12}+245a^{11}-1089a^{10}+363a^{9}+1485a^{8}-561a^{7}-1410a^{6}-82a^{5}+1183a^{4}+316a^{3}-447a^{2}-118a+11$, $17a^{15}-119a^{14}+216a^{13}+251a^{12}-1096a^{11}+343a^{10}+1527a^{9}-543a^{8}-1471a^{7}-112a^{6}+1230a^{5}+366a^{4}-461a^{3}-148a^{2}+5a$, $17a^{15}-119a^{14}+217a^{13}+245a^{12}-1089a^{11}+363a^{10}+1485a^{9}-561a^{8}-1410a^{7}-82a^{6}+1183a^{5}+316a^{4}-447a^{3}-118a^{2}+12a$, $16a^{14}-112a^{13}+205a^{12}+226a^{11}-1019a^{10}+354a^{9}+1367a^{8}-530a^{7}-1293a^{6}-70a^{5}+1091a^{4}+278a^{3}-409a^{2}-103a+9$, $5a^{15}-10a^{14}-111a^{13}+391a^{12}+36a^{11}-1485a^{10}+979a^{9}+1982a^{8}-1238a^{7}-2054a^{6}+235a^{5}+1803a^{4}+310a^{3}-681a^{2}-163a+16$, $4a^{15}-23a^{14}+16a^{13}+122a^{12}-185a^{11}-239a^{10}+469a^{9}+306a^{8}-532a^{7}-416a^{6}+285a^{5}+418a^{4}-39a^{3}-170a^{2}-16a+5$, $a^{11}-5a^{10}+3a^{9}+18a^{8}-21a^{7}-21a^{6}+19a^{5}+28a^{4}-22a^{2}-8a+1$, $a^{15}-8a^{14}+19a^{13}+7a^{12}-89a^{11}+79a^{10}+109a^{9}-149a^{8}-86a^{7}+105a^{6}+104a^{5}-54a^{4}-76a^{3}+24a^{2}+16a-1$, $4a^{15}-24a^{14}+24a^{13}+101a^{12}-180a^{11}-165a^{10}+354a^{9}+284a^{8}-373a^{7}-445a^{6}+176a^{5}+390a^{4}+60a^{3}-141a^{2}-64a+5$
|
| |
| Regulator: | \( 723941.623378 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 723941.623378 \cdot 1}{2\cdot\sqrt{83530755611033600000000}}\cr\approx \mathstrut & 0.202520985159 \end{aligned}\] (assuming GRH)
Galois group
$C_4^4.C_2\wr C_2^2$ (as 16T1769):
| A solvable group of order 16384 |
| The 220 conjugacy class representatives for $C_4^4.C_2\wr C_2^2$ |
| Character table for $C_4^4.C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.6.386560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{7}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.8.2.24a1.41 | $x^{16} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 7 x^{8} + 2 x^{7} + 3 x^{6} + 2 x^{5} + 7 x^{4} + 6 x^{3} + 6 x^{2} + 7$ | $2$ | $8$ | $24$ | $C_8\times C_2$ | $$[3]^{8}$$ |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(151\)
| 151.2.1.0a1.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 151.2.1.0a1.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 151.2.1.0a1.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 151.2.1.0a1.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 151.2.2.2a1.2 | $x^{4} + 298 x^{3} + 22213 x^{2} + 1788 x + 187$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 151.4.1.0a1.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(559001\)
| $\Q_{559001}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{559001}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{559001}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{559001}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |