Normalized defining polynomial
\( x^{16} + 40 x^{14} + 1820 x^{12} - 72436 x^{11} - 40040 x^{10} + 569140 x^{9} + 150150 x^{8} - 1138280 x^{7} - 168168 x^{6} + 724360 x^{5} + 60060 x^{4} - 139300 x^{3} - 5720 x^{2} + 5572 x + 65 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76933748282119317062218648643177211504640000000000000000=2^{26}\cdot 5^{16}\cdot 7^{12}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3110.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{3}{10} a$, $\frac{1}{10} a^{5} + \frac{1}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{20} a^{6} - \frac{1}{20} a^{4} - \frac{1}{5} a^{3} + \frac{3}{20} a^{2} - \frac{1}{5} a + \frac{1}{4}$, $\frac{1}{100} a^{7} - \frac{1}{50} a^{6} - \frac{1}{20} a^{5} + \frac{1}{20} a^{3} + \frac{7}{25} a^{2} + \frac{39}{100} a + \frac{3}{10}$, $\frac{1}{200} a^{8} - \frac{1}{50} a^{6} - \frac{1}{20} a^{4} - \frac{3}{50} a^{3} - \frac{1}{10} a^{2} - \frac{3}{50} a - \frac{3}{40}$, $\frac{1}{400} a^{9} - \frac{1}{400} a^{8} - \frac{1}{200} a^{7} - \frac{1}{40} a^{6} + \frac{1}{50} a^{4} + \frac{31}{200} a^{3} + \frac{7}{200} a^{2} + \frac{31}{80} a + \frac{5}{16}$, $\frac{1}{2000} a^{10} + \frac{1}{1000} a^{9} - \frac{1}{2000} a^{8} + \frac{1}{250} a^{7} - \frac{17}{1000} a^{6} + \frac{11}{250} a^{5} - \frac{7}{1000} a^{4} + \frac{29}{250} a^{3} + \frac{369}{2000} a^{2} - \frac{181}{1000} a - \frac{93}{400}$, $\frac{1}{4000} a^{11} - \frac{1}{4000} a^{10} + \frac{3}{4000} a^{9} + \frac{1}{4000} a^{8} - \frac{9}{2000} a^{7} + \frac{7}{400} a^{6} - \frac{89}{2000} a^{5} - \frac{73}{2000} a^{4} - \frac{7}{4000} a^{3} + \frac{451}{4000} a^{2} + \frac{1111}{4000} a + \frac{389}{800}$, $\frac{1}{40000} a^{12} - \frac{1}{20000} a^{11} - \frac{1}{800} a^{9} - \frac{19}{8000} a^{8} + \frac{17}{5000} a^{7} - \frac{13}{625} a^{6} + \frac{4}{125} a^{5} - \frac{53}{1600} a^{4} - \frac{551}{4000} a^{3} + \frac{457}{1250} a^{2} + \frac{1561}{20000} a + \frac{943}{8000}$, $\frac{1}{80000} a^{13} - \frac{1}{80000} a^{12} - \frac{1}{40000} a^{11} + \frac{1}{8000} a^{10} - \frac{1}{3200} a^{9} - \frac{19}{80000} a^{8} + \frac{23}{10000} a^{7} + \frac{201}{10000} a^{6} + \frac{647}{16000} a^{5} - \frac{147}{3200} a^{4} + \frac{517}{40000} a^{3} - \frac{457}{40000} a^{2} + \frac{1717}{80000} a - \frac{6237}{16000}$, $\frac{1}{160000} a^{14} - \frac{1}{160000} a^{12} - \frac{1}{10000} a^{11} + \frac{1}{32000} a^{10} - \frac{1}{40000} a^{9} - \frac{49}{32000} a^{8} + \frac{53}{20000} a^{7} - \frac{1021}{160000} a^{6} - \frac{29}{2000} a^{5} - \frac{4771}{160000} a^{4} - \frac{959}{4000} a^{3} + \frac{47031}{160000} a^{2} + \frac{12789}{40000} a - \frac{12731}{32000}$, $\frac{1}{145600000} a^{15} + \frac{187}{145600000} a^{14} - \frac{37}{11200000} a^{13} + \frac{81}{11200000} a^{12} - \frac{1303}{11200000} a^{11} - \frac{1713}{11200000} a^{10} - \frac{12261}{11200000} a^{9} - \frac{13507}{11200000} a^{8} + \frac{29191}{11200000} a^{7} - \frac{267483}{11200000} a^{6} + \frac{161313}{11200000} a^{5} + \frac{304651}{11200000} a^{4} + \frac{1142987}{11200000} a^{3} - \frac{43011103}{145600000} a^{2} + \frac{14901589}{145600000} a + \frac{841467}{2240000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1784634715930000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{16}$ (as 16T1953):
| A non-solvable group of order 10461394944000 |
| The 123 conjugacy class representatives for $A_{16}$ are not computed |
| Character table for $A_{16}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.8.20.90 | $x^{8} + 16 x^{2} + 36$ | $8$ | $1$ | $20$ | $C_2^2 \wr C_2$ | $[2, 2, 3, 7/2]^{2}$ | |
| 5 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.13.24.16 | $x^{13} + 130 x^{12} + 13$ | $13$ | $1$ | $24$ | $C_{13}:C_3$ | $[2]^{3}$ | |