Normalized defining polynomial
\( x^{16} - 32 x^{14} - 48 x^{13} + 196 x^{12} + 688 x^{11} + 1208 x^{10} + 496 x^{9} - 4352 x^{8} - 8000 x^{7} - 1952 x^{6} + 6112 x^{5} + 9112 x^{4} + 6560 x^{3} + 1200 x^{2} - 672 x - 196 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(751923235065182967870521344=2^{62}\cdot 113^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} + \frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5}$, $\frac{1}{140} a^{14} - \frac{1}{140} a^{13} - \frac{3}{140} a^{12} - \frac{17}{140} a^{11} - \frac{11}{140} a^{10} - \frac{2}{35} a^{9} + \frac{3}{35} a^{8} + \frac{2}{35} a^{7} - \frac{3}{70} a^{6} + \frac{1}{10} a^{5} - \frac{31}{70} a^{4} - \frac{1}{2} a^{3} + \frac{13}{70} a^{2} + \frac{13}{35} a - \frac{2}{5}$, $\frac{1}{6767068337213983820} a^{15} + \frac{3048476212591493}{1353413667442796764} a^{14} - \frac{13455771868527144}{1691767084303495955} a^{13} - \frac{54667954587350253}{3383534168606991910} a^{12} - \frac{51638995185059768}{1691767084303495955} a^{11} + \frac{922764429273753}{14216530120197445} a^{10} + \frac{2311008282206703}{241681012043356565} a^{9} - \frac{4435465760408696}{99515710841382115} a^{8} + \frac{28272623453846311}{199031421682764230} a^{7} - \frac{106404271806138771}{676706833721398382} a^{6} - \frac{807718556482264978}{1691767084303495955} a^{5} + \frac{221081011588283227}{1691767084303495955} a^{4} + \frac{36732620659343450}{338353416860699191} a^{3} + \frac{112220045067185708}{241681012043356565} a^{2} - \frac{119159775576235332}{338353416860699191} a + \frac{8596500068914879}{48336202408671313}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 331382337.459 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.242665652224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.17 | $x^{8} + 16 x^{5} + 12 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[2, 3, 4, 5]$ |
| 2.8.31.17 | $x^{8} + 16 x^{5} + 12 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[2, 3, 4, 5]$ | |
| 113 | Data not computed | ||||||