Normalized defining polynomial
\( x^{16} - 4 x^{15} - 89 x^{14} + 94 x^{13} + 3029 x^{12} + 7131 x^{11} - 45741 x^{10} - 294515 x^{9} + 183074 x^{8} + 4007947 x^{7} + 2346236 x^{6} - 23054771 x^{5} - 23619289 x^{4} + 52233129 x^{3} + 53780434 x^{2} - 44413090 x - 19843377 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73930914322948009059130451759201=89^{5}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{12877} a^{14} + \frac{881}{12877} a^{13} + \frac{2328}{12877} a^{12} + \frac{52}{12877} a^{11} - \frac{6323}{12877} a^{10} + \frac{2861}{12877} a^{9} + \frac{4973}{12877} a^{8} + \frac{2840}{12877} a^{7} + \frac{4892}{12877} a^{6} + \frac{4553}{12877} a^{5} + \frac{4292}{12877} a^{4} + \frac{2208}{12877} a^{3} + \frac{4039}{12877} a^{2} - \frac{1089}{12877} a - \frac{3391}{12877}$, $\frac{1}{240353930965034443692517601930642210830747106235590929} a^{15} - \frac{9276607011395525126178566635910950377580547639306}{240353930965034443692517601930642210830747106235590929} a^{14} - \frac{36797472772054303713145365340365154573218359710290085}{240353930965034443692517601930642210830747106235590929} a^{13} - \frac{75807509148073679681967024235753376592318657293388990}{240353930965034443692517601930642210830747106235590929} a^{12} + \frac{114310444474239385551333530807903241308432225536454006}{240353930965034443692517601930642210830747106235590929} a^{11} - \frac{70599377887981675499247513148730877827246521958103525}{240353930965034443692517601930642210830747106235590929} a^{10} - \frac{75279356287332322834026577853293690649640742043027786}{240353930965034443692517601930642210830747106235590929} a^{9} - \frac{21300747722110482989736276180584037322596827029265217}{240353930965034443692517601930642210830747106235590929} a^{8} - \frac{64361514181349680128972612954815302720108967938505937}{240353930965034443692517601930642210830747106235590929} a^{7} - \frac{30294597235410777310184816771280165416625446557705679}{240353930965034443692517601930642210830747106235590929} a^{6} + \frac{100257301874179414001758854137127085058523316986922934}{240353930965034443692517601930642210830747106235590929} a^{5} + \frac{39750541111459524946407469389007878665470681983067329}{240353930965034443692517601930642210830747106235590929} a^{4} - \frac{10697958889338699239950862200085878306376340357624140}{240353930965034443692517601930642210830747106235590929} a^{3} + \frac{44947052055136412699517133546171750742577910344823947}{240353930965034443692517601930642210830747106235590929} a^{2} + \frac{105059908995525890749622908226301020436727053237885222}{240353930965034443692517601930642210830747106235590929} a + \frac{54469922421360324357850302850555790416171802760195240}{240353930965034443692517601930642210830747106235590929}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54153734420.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.62826146729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||
| 163 | Data not computed | ||||||